This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
YuhanWang
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Customizable multilingual zero-shot singing voice synthesis (SVS) has various potential applications in music composition and short video dubbing. However, existing SVS models overly depend on phoneme and note boundary annotations, limiting their robustness in zero-shot scenarios and producing poor transitions between phonemes and notes. Moreover, they also lack effective multi-level style control via diverse prompts. To overcome these challenges, we introduce TCSinger 2, a multi-task multilingual zero-shot SVS model with style transfer and style control based on various prompts. TCSinger 2 mainly includes three key modules: 1) Blurred Boundary Content (BBC) Encoder, predicts duration, extends content embedding, and applies masking to the boundaries to enable smooth transitions. 2) Custom Audio Encoder, uses contrastive learning to extract aligned representations from singing, speech, and textual prompts. 3) Flow-based Custom Transformer, leverages Cus-MOE, with F0 supervision, enhancing both the synthesis quality and style modeling of the generated singing voice. Experimental results show that TCSinger 2 outperforms baseline models in both subjective and objective metrics across multiple related tasks.
In team communication, dialogue acts play a crucial role in helping team members understand each other’s intentions and revealing the roles and communication patterns within interactions. Although existing studies have focused on using Dialogue Act classification to capture the speaker’s intentions, few have explored the underlying power dynamics reflected by these dialogue acts. To this end, we present an online Dialogue Act Classification and Dynamic Power Analysis framework—Act2P, which is based on large language model. The framework combines the zero-shot learning capability of LLMs and introduces an online feedback classification method that allows for online classification with iterative feedback to previous stages, achieving efficient and accurate classification without the labeled data. Additionally, we also propose the PowerRank algorithm, which quantifies power dynamics through a graph-based structure. Through comparative experiments with existing methods, we demonstrate the significant superiority of Act2P in online scenarios and successfully visualize dialogue power in online, clearly presenting the distribution and dynamic transfer of power. This framework provides new scientific insights and practical tools for optimizing team collaboration.
Tool learning aims to augment large language models (LLMs) with diverse tools, enabling them to act as agents for solving practical tasks. Due to the limited context length of tool-using LLMs, adopting information retrieval (IR) models to select useful tools from large toolsets is a critical initial step. However, the performance of IR models in tool retrieval tasks remains underexplored and unclear. Most tool-use benchmarks simplify this step by manually pre-annotating a small set of relevant tools for each task, which is far from the real-world scenarios. In this paper, we propose ToolRet, a heterogeneous tool retrieval benchmark comprising 7.6k diverse retrieval tasks, and a corpus of 43k tools, collected from existing datasets. We benchmark six types of models on ToolRet. Surprisingly, even the models with strong performance in conventional IR benchmarks, exhibit poor performance on ToolRet. This low retrieval quality degrades the task pass rate of tool-use LLMs. As a further step, we contribute a large-scale training dataset with over 200k instances, which substantially optimizes the tool retrieval ability of IR models.
Knowledge representation and reasoning are critical challenges in Artificial Intelligence (AI), particularly in integrating neural and symbolic approaches to achieve explainable and transparent AI systems. Traditional knowledge representation methods often fall short of capturing complex processes and state changes. We introduce Neuro-Conceptual Artificial Intelligence (NCAI), a specialization of the neuro-symbolic AI approach that integrates conceptual modeling using Object-Process Methodology (OPM) ISO 19450:2024 with deep learning to enhance question-answering (QA) quality. By converting natural language text into OPM models using in-context learning, NCAI leverages the expressive power of OPM to represent complex OPM elements—processes, objects, and states—beyond what traditional triplet-based knowledge graphs can easily capture. This rich structured knowledge representation improves reasoning transparency and answer accuracy in an OPM-QA system. We further propose transparency evaluation metrics to quantitatively measure how faithfully the predicted reasoning aligns with OPM-based conceptual logic. Our experiments demonstrate that NCAI outperforms traditional methods, highlighting its potential for advancing neuro-symbolic AI by providing rich knowledge representations, measurable transparency, and improved reasoning.