This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
YudiZhang
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Speculative sampling has emerged as an important technique for accelerating the auto-regressive generation process of large language models (LLMs) by utilizing a draft-then-verify mechanism to produce multiple tokens per forward pass. While state-of-the-art speculative sampling methods use only a single layer and a language modeling (LM) head as the draft model to achieve impressive layer compression, their efficiency gains are substantially reduced for large-vocabulary LLMs, such as Llama-3-8B with a vocabulary of 128k tokens. To address this, we present FR-Spec, a frequency-ranked speculative sampling framework that optimizes draft candidate selection through vocabulary space compression. By constraining the draft search to a frequency-prioritized token subset, our method reduces LM Head computation overhead by 75% while ensuring the equivalence of the final output distribution. Experiments across multiple datasets demonstrate an average of 1.12× speedup over the state-of-the-art speculative sampling method EAGLE-2. Code is availableat https://github.com/thunlp/FR-Spec.
The significant breakthroughs of Medical Multi-Modal Large Language Models (Med-MLLMs) renovate modern healthcare with robust information synthesis and medical decision support. However, these models are often evaluated on benchmarks that are unsuitable for the Med-MLLMs due to the intricate nature of the real-world diagnostic frameworks, which encompass diverse medical specialties and involve complex clinical decisions. Thus, a clinically representative benchmark is highly desirable for credible Med-MLLMs evaluation. To this end, we introduce Asclepius, a novel Med-MLLM benchmark that comprehensively assesses Med-MLLMs in terms of: distinct medical specialties (cardiovascular, gastroenterology, etc.) and different diagnostic capacities (perception, disease analysis, etc.). Grounded in 3 proposed core principles, Asclepius ensures a comprehensive evaluation by encompassing 15 medical specialties, stratifying into 3 main categories and 8 sub-categories of clinical tasks, and exempting overlap with the existing VQA dataset. We further provide an in-depth analysis of 6 Med-MLLMs and compare them with 3 human specialists, providing insights into their competencies and limitations in various medical contexts. Our work not only advances the understanding of Med-MLLMs’ capabilities but also sets a precedent for future evaluations and the safe deployment of these models in clinical environments.
Retrieval-augmented generation (RAG) with foundation models has achieved strong performance across diverse tasks, but their capacity for expert-level reasoning—such as solving Olympiad-level physics problems—remains largely unexplored. Inspired by the way students prepare for competitions by reviewing past problems, we investigate the potential of RAG to enhance physics reasoning in foundation models. We introduce PhoPile, a high-quality multimodal dataset specifically designed for Olympiad-level physics, enabling systematic study of retrieval-based reasoning. PhoPile includes diagrams, graphs, and equations, capturing the inherently multimodal nature of physics problem solving. Using PhoPile, we benchmark RAG-augmented foundation models, covering both large language models (LLMs) and large multimodal models (LMMs) with multiple retrievers. Our results demonstrate that integrating retrieval with physics corpora can improve model performance, while also highlighting challenges that motivate further research in retrieval-augmented physics reasoning.
Multi-modal sarcasm detection has attracted much recent attention. Nevertheless, the existing benchmark (MMSD) has some shortcomings that hinder the development of reliable multi-modal sarcasm detection system: (1) There are some spurious cues in MMSD, leading to the model bias learning; (2) The negative samples in MMSD are not always reasonable. To solve the aforementioned issues, we introduce MMSD2.0, a correction dataset that fixes the shortcomings of MMSD, by removing the spurious cues and re-annotating the unreasonable samples. Meanwhile, we present a novel framework called multi-view CLIP that is capable of leveraging multi-grained cues from multiple perspectives (i.e., text, image, and text-image interaction view) for multi-modal sarcasm detection. Extensive experiments show that MMSD2.0 is a valuable benchmark for building reliable multi-modal sarcasm detection systems and multi-view CLIP can significantly outperform the previous best baselines.