Yuchun Miao


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
AMIA: Automatic Masking and Joint Intention Analysis Makes LVLMs Robust Jailbreak Defenders
Yuqi Zhang | Yuchun Miao | Zuchao Li | Liang Ding
Findings of the Association for Computational Linguistics: EMNLP 2025

We introduce AMIA, a lightweight, inference-only defense for Large Vision–Language Models (LVLMs) that (1) Automatically Masks a small set of text-irrelevant image patches to disrupt adversarial perturbations, and (2) conducts joint Intention Analysis to uncover and mitigate hidden harmful intents before response generation. Without any retraining, AMIA improves defense success rates across diverse LVLMs and jailbreak benchmarks from an average of 52.4% to 81.7%, preserves general utility with only a 2% average accuracy drop, and incurs only modest inference overhead. Ablation confirms that both masking and intention analysis are essential for robust safety–utility trade-off. Our code will be released.