Yuchen Wu


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Edit Once, Update Everywhere: A Simple Framework for Cross-Lingual Knowledge Synchronization in LLMs
Yuchen Wu | Liang Ding | Li Shen | Dacheng Tao
Findings of the Association for Computational Linguistics: ACL 2025

Knowledge editing allows for efficient adaptation of large language models (LLMs) to new information or corrections without requiring full retraining. However, prior methods typically focus on either single-language editing or basic multilingual editing, failing to achieve true cross-linguistic knowledge synchronization. To address this, we present a simple and practical state-of-the-art (SOTA) recipe Cross-Lingual Knowledge Democracy Edit (X-KDE), designed to propagate knowledge from a dominant language to other languages effectively. Our X-KDE comprises two stages: (i) Cross-lingual Edition Instruction Tuning (XE-IT), which fine-tunes the model on a curated parallel dataset to modify in-scope knowledge while preserving unrelated information, and (ii) Target-language Preference Optimization (TL-PO), which applies advanced optimization techniques to ensure consistency across languages, fostering the transfer of updates. Additionally, we contribute a high-quality, cross-lingual dataset, specifically designed to enhance knowledge transfer across languages. Extensive experiments on the Bi-ZsRE and MzsRE benchmarks show that X-KDE significantly enhances cross-lingual performance, achieving an average improvement of +8.19%, while maintaining high accuracy in monolingual settings.

pdf bib
Robust Knowledge Editing via Explicit Reasoning Chains for Distractor-Resilient Multi-Hop QA
Yuchen Wu | Liang Ding | Li Shen | Dacheng Tao
Findings of the Association for Computational Linguistics: EMNLP 2025

Large language models (LLMs) encode vast amounts of world knowledge but remain static once trained, making timely integration of emerging facts prohibitively expensive via full retraining. Knowledge-editing techniques have thus emerged to inject or overwrite specific facts into LLMs, yet they either over-rely on superficial cues or incur complex, iterative pipelines that collapse under noisy, multi-hop conditions. We introduce **Reason-KE**, an end-to-end reasoning-chain-based editing framework that steers a pretrained LLM through four structured stages—fact acknowledgment, relevance determination, selective application, and final reasoning—to filter distractors in a single pass. Trained on MQuAKE-CF with up to four irrelevant facts, Reason-KE elevates Qwen2.5-7B’s multi-hop QA accuracy to 90.2% (↑17.6 pp) while suffering merely 6.3% drop under heavy distraction and <1% when answers are leaked. Our quantitative analysis confirms Reason-KE’s resilience and efficiency, establishing a new state of the art for reliable LLM knowledge updates. The code will be released.