This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Yuchen EleanorJiang
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
The dream to create AI assistants as capable and versatile as the fictional J.A.R.V.I.S from Iron Man has long captivated imaginations. With the evolution of multi-modal large language models ((M)LLMs), this dream is closer to reality, as (M)LLM-based Agents using computers, mobile phones and web browsers by operating within the environments and interfaces (e.g., Graphical User Interface (GUI) and Command Line Interface (CLI)) provided by operating systems (OS) to automate tasks have significantly advanced. This paper presents a comprehensive survey on these advanced agents, designated as OS Agents. We begin by elucidating the fundamentals of OS Agents, exploring their key components and capabilities. We then examine methodologies for constructing OS Agents, focusing on domain-specific foundation models and agent frameworks. A detailed review of evaluation metrics and benchmarks highlights how OS Agents are assessed across diverse platforms and tasks. Finally, we discuss current challenges and identify promising directions for future research. An open-source GitHub repository is maintained as a dynamic resource to foster further innovation in this field.
Recently, Agentic AI has become an increasingly popular field of research. However, we argue that current practices on agent research are far from standard, rigorous scientific research, which makes it hard to conduct apples-to-apples comparisons among and against existing methods. As a result, it is still obscure how different design choices in an agent framework impact its effectiveness, and measuring progress on agent research remains very hard. In this work, we conduct a systematic empirical study on the GAIA benchmark to investigate the impact of different popular design choices within key agent components in a fair and rigorous way. To begin with, we find that the lack of a standard evaluation protocol makes previous works, even the open-sourced ones, not reproducible, and the variance between different random runs is often non-negligible. Therefore, we first introduce a more robust evaluation protocol to make comparisons more stable. Our empirical study then unveils which components and designs, as well as correlations between these designs, are the keys for building effective agents, while others are not and redundant, despite seemingly making sense. With the insights gained from our empirical study, we build and open-source OAgents, a new foundation agent framework that achieves state-of-the-art performance among open-source projects, providing a good starting point and guidelines for building effective agents. More importantly, supports various design choices for agent components in a modularized way, facilitating future scientific research on Agentic AI.
Several recent papers claim to have achieved human parity at sentence-level machine translation (MT)—especially between high-resource language pairs. In response, the MT community has, in part, shifted its focus to document-level translation. Translating documents requires a deeper understanding of the structure and meaning of text, which is often captured by various kinds of discourse phenomena such as consistency, coherence, and cohesion. However, this renders conventional sentence-level MT evaluation benchmarks inadequate for evaluating the performance of context-aware MT systems. This paperpresents a new dataset with rich discourse annotations, built upon the large-scale parallel corpus BWB introduced in Jiang et al. (2022a). The new BWB annotation introduces four extra evaluation aspects, i.e., entity, terminology, coreference, and quotation, covering 15,095 entity mentions in both languages. Using these annotations, we systematically investigate the similarities and differences between the discourse structures of source and target languages, and the challenges they pose to MT. We discover that MT outputs differ fundamentally from human translations in terms of their latent discourse structures. This gives us a new perspective on the challenges and opportunities in document-level MT. We make our resource publicly available to spur future research in document-level MT and its generalization to other language translation tasks.
Machine translation quality estimation (QE) predicts human judgements of a translation hypothesis without seeing the reference. State-of-the-art QE systems based on pretrained language models have been achieving remarkable correlations with human judgements yet they are computationally heavy and require human annotations, which are slow and expensive to create. To address these limitations, we define the problem of metric estimation (ME) where one predicts the automated metric scores also without the reference. We show that even without access to the reference, our model can estimate automated metrics (ρ = 60% for BLEU, ρ = 51% for other metrics) at the sentence-level. Because automated metrics correlate with human judgements, we can leverage the ME task for pre-training a QE model. For the QE task, we find that pre-training on TER is better (ρ = 23%) than training for scratch (ρ = 20%).
The WMT 2023 Terminology Shared Task investigates progress in machine translation of texts with specialized vocabulary. The participants were given the source text and segment-level terminology dictionaries for three language pairs: Chinese→English, English→Czech, and German→English. We evaluate 21 submissions from 7 teams on two main criteria: general translation quality and the effectiveness of translating specialized terminology. Systems took varied approaches — incorporating terminology at inference time or weakly supervised training that uses terminology access. While incorporating terminology dictionaries leads to improvement in the translation quality, incorporating an equal amount of information from the reference leads to similar results. This challenges the position of terminologies being the crux of meaning in translation, it can also be explained by inadequate metrics which are not terminology-centric.
Recent years have seen a paradigm shift in NLP towards using pretrained language models (PLM) for a wide range of tasks. However, there are many difficult design decisions to represent structures (e.g. tagged text, coreference chains) in a way such that they can be captured by PLMs. Prior work on structured prediction with PLMs typically flattens the structured output into a sequence, which limits the quality of structural information being learned and leads to inferior performance compared to classic discriminative models. In this work, we describe an approach to model structures as sequences of actions in an autoregressive manner with PLMs, allowing in-structure dependencies to be learned without any loss. Our approach achieves the new state-of-the-art on all the structured prediction tasks we looked at, namely, named entity recognition, end-to-end relation extraction, and coreference resolution.