This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
YubingRen
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Large Language Models (LLMs) excel in various domains but pose inherent privacy risks. Existing methods to evaluate privacy leakage in LLMs often use memorized prefixes or simple instructions to extract data, both of which well-alignment models can easily block. Meanwhile, Jailbreak attacks bypass LLM safety mechanisms to generate harmful content, but their role in privacy scenarios remains underexplored. In this paper, we examine the effectiveness of jailbreak attacks in extracting sensitive information, bridging privacy leakage and jailbreak attacks in LLMs. Moreover, we propose PIG, a novel framework targeting Personally Identifiable Information (PII) and addressing the limitations of current jailbreak methods. Specifically, PIG identifies PII entities and their types in privacy queries, uses in-context learning to build a privacy context, and iteratively updates it with three gradient-based strategies to elicit target PII. We evaluate PIG and existing jailbreak methods using two privacy-related datasets. Experiments on four white-box and two black-box LLMs show that PIG outperforms baseline methods and achieves state-of-the-art (SoTA) results. The results underscore significant privacy risks in LLMs, emphasizing the need for stronger safeguards.
The rise of Large Language Models (LLMs) has heightened concerns about the misuse of AI-generated text, making watermarking a promising solution. Mainstream watermarking schemes for LLMs fall into two categories: logits-based and sampling-based. However, current schemes entail trade-offs among robustness, text quality, and security. To mitigate this, we integrate logits-based and sampling-based schemes, harnessing their respective strengths to achieve synergy. In this paper, we propose a versatile symbiotic watermarking framework with three strategies: serial, parallel, and hybrid. The hybrid framework adaptively embeds watermarks using token entropy and semantic entropy, optimizing the balance between detectability, robustness, text quality, and security. Furthermore, we validate our approach through comprehensive experiments on various datasets and models. Experimental results indicate that our method outperforms existing baselines and achieves state-of-the-art (SOTA) performance. We believe this framework provides novel insights into diverse watermarking paradigms.
The rapid advancement of large language models has raised significant concerns regarding their potential misuse by malicious actors. As a result, developing effective detectors to mitigate these risks has become a critical priority. However, most existing detection methods focus excessively on detection accuracy, often neglecting the societal risks posed by high false positive rates (FPRs). This paper addresses this issue by leveraging Conformal Prediction (CP), which effectively constrains the upper bound of FPRs. While directly applying CP constrains FPRs, it also leads to a significant reduction in detection performance. To overcome this trade-off, this paper proposes a Zero-Shot Machine-Generated Text Detection Framework via Multiscaled Conformal Prediction (MCP), which both enforces the FPR constraint and improves detection performance. This paper also introduces RealDet, a high-quality dataset that spans a wide range of domains, ensuring realistic calibration and enabling superior detection performance when combined with MCP. Empirical evaluations demonstrate that MCP effectively constrains FPRs, significantly enhances detection performance, and increases robustness against adversarial attacks across multiple detectors and datasets.
The widespread adoption of Large Language Models (LLMs) has led to an increase in AI-generated text on the Internet, presenting a crucial challenge to differentiate AI-created content from human-written text. This challenge is critical to prevent issues of authenticity, trust, and potential copyright violations. Current research focuses on watermarking LLM-generated text, but traditional techniques struggle to balance robustness with text quality. We introduce a novel watermarking approach, Robust and Imperceptible Watermarking (RIW) for LLMs, which leverages token prior probabilities to improve detectability and maintain watermark imperceptibility. RIW methodically embeds watermarks by partitioning selected tokens into two distinct groups based on their prior probabilities and employing tailored strategies for each group. In the detection stage, the RIW method employs the ‘voted z-test’ to provide a statistically robust framework to identify the presence of a watermark accurately. The effectiveness of RIW is evaluated across three key dimensions: success rate, text quality, and robustness against removal attacks. Our experimental results on various LLMs, including GPT2-XL, OPT-1.3B, and LLaMA2-7B, indicate that RIW surpasses existing models, and also exhibits increased robustness against various attacks and good imperceptibility, thus promoting the responsible use of LLMs.
A text corpus centered on events is foundational to research concerning the detection, representation, reasoning, and harnessing of online events. The majority of current event-based datasets mainly target sentence-level tasks, thus to advance event-related research spanning from sentence to document level, this paper introduces DEIE, a unified large-scale document-level event information extraction dataset with over 56,000+ events and 242,000+ arguments. Three key features stand out: large-scale manual annotation (20,000 documents), comprehensive unified annotation (encompassing event trigger/argument, summary, and relation at once), and emergency events annotation (covering 19 emergency types). Notably, our experiments reveal that current event-related models struggle with DEIE, signaling a pressing need for more advanced event-related research in the future.
Large Language Models (LLMs) have achieved impressive results in Machine Translation by simply following instructions, even without training on parallel data. However, LLMs still face challenges on low-resource languages due to the lack of pre-training data. In real-world situations, humans can become proficient in their native languages through abundant and meaningful social interactions and can also learn foreign languages effectively using well-organized textbooks. Drawing inspiration from human learning patterns, we introduce the Translate After LEarNing Textbook (TALENT) approach, which aims to enhance LLMs’ ability to translate low-resource languages by learning from a textbook. TALENT follows a step-by-step process: (1) Creating a Textbook for low-resource languages. (2) Guiding LLMs to absorb the Textbook’s content for Syntax Patterns. (3) Enhancing translation by utilizing the Textbook and Syntax Patterns. We thoroughly assess TALENT’s performance using 112 low-resource languages from FLORES-200 with two LLMs: ChatGPT and BLOOMZ. Evaluation across three different metrics reveals that TALENT consistently enhances translation performance by 14.8% compared to zero-shot baselines. Further analysis demonstrates that TALENT not only improves LLMs’ comprehension of low-resource languages but also equips them with the knowledge needed to generate accurate and fluent sentences in these languages.
Recent studies have shown the effectiveness of retrieval augmentation in many generative NLP tasks. These retrieval-augmented methods allow models to explicitly acquire prior external knowledge in a non-parametric manner and regard the retrieved reference instances as cues to augment text generation. These methods use similarity-based retrieval, which is based on a simple hypothesis: the more the retrieved demonstration resembles the original input, the more likely the demonstration label resembles the input label. However, due to the complexity of event labels and sparsity of event arguments, this hypothesis does not always hold in document-level EAE. This raises an interesting question: How do we design the retrieval strategy for document-level EAE? We investigate various retrieval settings from the input and label distribution views in this paper. We further augment document-level EAE with pseudo demonstrations sampled from event semantic regions that can cover adequate alternatives in the same context and event schema. Through extensive experiments on RAMS and WikiEvents, we demonstrate the validity of our newly introduced retrieval-augmented methods and analyze why they work.
Event argument extraction is critical to various natural language processing tasks for providing structured information. Existing works usually extract the event arguments one by one, and mostly neglect to build dependency information among event argument roles, especially from the perspective of event structure. Such an approach hinders the model from learning the interactions between different roles. In this paper, we raise our research question: How to adequately model dependencies between different roles for better performance? To this end, we propose an intra-event and inter-event dependency-aware graph network, which uses the event structure as the fundamental unit to construct dependencies between roles. Specifically, we first utilize the dense intra-event graph to construct role dependencies within events, and then construct dependencies between events by retrieving similar events of the current event through the retrieval module. To further optimize dependency information and event representation, we propose a dependency interaction module and two auxiliary tasks to improve the extraction ability of the model in different scenarios. Experimental results on the ACE05, RAMS, and WikiEvents datasets show the great advantages of our proposed approach.
Transforming the large amounts of unstructured text on the Internet into structured event knowledge is a critical, yet unsolved goal of NLP, especially when addressing document-level text. Existing methods struggle in Document-level Event Extraction (DEE) due to its two intrinsic challenges: (a) Nested arguments, which means one argument is the sub-string of another one. (b) Multiple events, which indicates we should identify multiple events and assemble the arguments for them. In this paper, we propose a role-interactive multi-event head attention network (CLIO) to solve these two challenges jointly. The key idea is to map different events to multiple subspaces (i.e. multi-event head). In each event subspace, we draw the semantic representation of each role closer to its corresponding arguments, then we determine whether the current event exists. To further optimize event representation, we propose an event representation enhancing strategy to regularize pre-trained embedding space to be more isotropic. Our experiments on two widely used DEE datasets show that CLIO achieves consistent improvements over previous methods.
Machine Translation task has made great progress with the help of auto-regressive decoding paradigm and Transformer architecture. In this paradigm, though the encoder can obtain global source representations, the decoder can only use translation history to determine the current word. Previous promising works attempted to address this issue by applying a draft or a fixed-length semantic embedding as target-side global information. However, these methods either degrade model efficiency or show limitations in expressing semantics. Motivated by Functional Equivalence Theory, we extract several semantic kernels from a source sentence, each of which can express one semantic segment of the original sentence. Together, these semantic kernels can capture global semantic information, and we project them into target embedding space to guide target sentence generation. We further force our model to use semantic kernels at each decoding step through an adaptive mask algorithm. Empirical studies on various machine translation benchmarks show that our approach gains approximately an improvement of 1 BLEU score on most benchmarks over the Transformer baseline and about 1.7 times faster than previous works on average at inference time.