Yuanzhen Lin


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2019

pdf bib
Team Peter-Parker at SemEval-2019 Task 4: BERT-Based Method in Hyperpartisan News Detection
Zhiyuan Ning | Yuanzhen Lin | Ruichao Zhong
Proceedings of the 13th International Workshop on Semantic Evaluation

This paper describes the team peter-parker’s participation in Hyperpartisan News Detection task (SemEval-2019 Task 4), which requires to classify whether a given news article is bias or not. We decided to use JAVA to do the article parsing tool and the BERT-Based model to do the bias prediction. Furthermore, we will show experiment results with analysis.