Yu-Ting Lin


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Characterised LLMs Affect its Evaluation of Summary and Translation
Yu-An Lu | Yu-Ting Lin
Proceedings of the 4th Workshop on Evaluation and Comparison of NLP Systems

In today’s widespread use of Large Language Models (LLMs), there have been significant achievements in various text domains such as generating summaries and translations. However, there is still room for development and improvement in evaluating the outputs of LLMs. In this paper, we propose an innovative scoring system that assesses the quality of summaries and translations using multiple metrics, we also enhance LLM’s performance in scoring tasks by assigning it different roles, effectively making it act as an expert. We test four roles in the study: a teacher, a proofreader, a travel writer, and an internet troll, comparing the advantages and disadvantages of each role in the scoring task. Our research results demonstrate that emphasizing LLM’s multilingual capabilities and strict standards as its identity can effectively boost its performance. Additionally, imbuing LLM with a more critical thinking ability enhances its performance in translation tasks compared to a milder LLM identity. In summary, we show that assigning different identities to LLM can influence its performance in scoring tasks. We believe that this research will contribute to the use of LLMs for scoring purposes.