This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Yu-Chiang FrankWang
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
It is challenging to update Large language models (LLMs) since real-world knowledge evolves. While existing Lifelong Knowledge Editing (LKE) methods efficiently update sequentially incoming edits, they often struggle to precisely overwrite the outdated knowledge with the latest one, resulting in conflicts that hinder LLMs from determining the correct answer. To address this Serial Lifelong Knowledge Editing (sLKE) problem, wepropose a novel Mixture-of-Knowledge-Experts scheme with an Activation-guided Routing Mechanism (ARM), which assigns specialized experts to store domain-specific knowledge and ensures that each update completely overwrites old information with the latest data. Furthermore, we introduce a novel sLKE benchmark where answers to the same concept are updated repeatedly, to assess the ability of editing methods to refresh knowledge accurately. Experimental results on both LKE and sLKE benchmarks show that our ARM performs favorably against SOTA knowledge editing methods.
Construction of a general-purpose post-recognition error corrector poses a crucial question: how can we most effectively train a model on a large mixture of domain datasets? The answer would lie in learning dataset-specific features and digesting their knowledge in a single model. Previous methods achieve this by having separate correction language models, resulting in a significant increase in parameters. In this work, we present Mixture-of-Experts as a solution, highlighting that MoEs are much more than a scalability tool. We propose a Multi-Task Correction MoE, where we train the experts to become an “expert” of speech-to-text, language-to-text and vision-to-text datasets by learning to route each dataset’s tokens to its mapped expert. Experiments on the Open ASR Leaderboard show that we explore a new state-of-the-art performance by achieving an average relative 5.0% WER reduction and substantial improvements in BLEU scores for speech and translation tasks. On zero-shot evaluation, NeKo outperforms GPT-3.5 and Claude-3.5-Sonnet with 15.5% to 27.6% relative WER reduction in the Hyporadise benchmark. NeKo performs competitively on grammar and post-OCR correction as a multi-task model.
Large Vision-Language Models (LVLMs) have transformed image captioning, shifting from concise captions to detailed descriptions. We introduce LOTUS, a leaderboard for evaluating detailed captions, addressing three main gaps in existing evaluations: lack of standardized criteria, bias-aware assessments, and user preference considerations. LOTUS comprehensively evaluates various aspects, including caption quality (e.g., alignment, descriptiveness), risks (e.g., hallucination), and societal biases (e.g., gender bias) while enabling preference-oriented evaluations by tailoring criteria to diverse user preferences. Our analysis of recent LVLMs reveals no single model excels across all criteria, while correlations emerge between caption detail and bias risks. Preference-oriented evaluations demonstrate that optimal model selection depends on user priorities.