Youwon Jang


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Confidence-guided Refinement Reasoning for Zero-shot Question Answering
Youwon Jang | Woo Suk Choi | Minjoon Jung | Minsu Lee | Byoung-Tak Zhang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

We propose Confidence-guided Refinement Reasoning (C2R), a novel training-free framework applicable to question-answering (QA) tasks across text, image, and video domains. C2R strategically constructs and refines sub-questions and their answers (sub-QAs), deriving a better confidence score for the target answer. C2R first curates a subset of sub-QAs to explore diverse reasoning paths, then compares the confidence scores of the resulting answer candidates to select the most reliable final answer. Since C2R relies solely on confidence scores derived from the model itself, it can be seamlessly integrated with various existing QA models, demonstrating consistent performance improvements across diverse models and benchmarks. Furthermore, we provide essential yet underexplored insights into how leveraging sub-QAs affects model behavior, specifically analyzing the impact of both the quantity and quality of sub-QAs on achieving robust and reliable reasoning.