Yoonah Park


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Improving Dialogue State Tracking through Combinatorial Search for In-Context Examples
Haesung Pyun | Yoonah Park | Yohan Jo
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In dialogue state tracking (DST), in-context learning comprises a retriever that selects labeled dialogues as in-context examples and a DST model that uses these examples to infer the dialogue state of the query dialogue. Existing methods for constructing training data for retrievers suffer from three key limitations: (1) the synergistic effect of examples is not considered, (2) the linguistic characteristics of the query are not sufficiently factored in, and (3) scoring is not directly optimized for DST performance. Consequently, the retriever can fail to retrieve examples that would substantially improve DST performance. To address these issues, we present CombiSearch—a method that scores effective in-context examples based on their combinatorial impact on DST performance. Our evaluation on MultiWOZ shows that retrievers trained with CombiSearch surpass state-of-the-art models, achieving a 20× gain in data efficiency and generalizing well to the SGD dataset. Moreover, CombiSearch attains a 12% absolute improvement in the upper bound DST performance over traditional approaches when no retrieval errors are assumed. This significantly increases the headroom for practical DST performance while demonstrating that existing methods rely on suboptimal data for retriever training.