Yongbin Guo


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
A Parameter-Efficient and Fine-Grained Prompt Learning for Vision-Language Models
Yongbin Guo | Shuzhen Li | Zhulin Liu | Tong Zhang | C.L.Philip Chen
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Current vision-language models (VLMs) understand complex vision-text tasks by extracting overall semantic information from large-scale cross-modal associations. However, extracting from large-scale cross-modal associations often smooths out semantic details and requires large computations, limiting multimodal fine-grained understanding performance and efficiency. To address this issue, this paper proposes a detail-oriented prompt learning (DoPL) method for vision-language models to implement fine-grained multi-modal semantic alignment with merely 0.25M trainable parameters. According to the low-entropy information concentration theory, DoPL explores shared interest tokens from text-vision correlations and transforms them into alignment weights to enhance text prompt and vision prompt via detail-oriented prompt generation. It effectively guides the current frozen layer to extract fine-grained text-vision alignment cues. Furthermore, DoPL constructs detail-oriented prompt generation for each frozen layer to implement layer-by-layer localization of fine-grained semantic alignment, achieving precise understanding in complex vision-text tasks. DoPL performs well in parameter-efficient fine-grained semantic alignment with only 0.12% tunable parameters for vision-language models. The state-of-the-art results over the previous parameter-efficient fine-tuning methods and full fine-tuning approaches on six benchmarks demonstrate the effectiveness and efficiency of DoPL in complex multi-modal tasks.