This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
YongGuan
Also published as:
勇 关
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Event relation extraction (ERE) is becoming increasingly important in the era of large language models. An extensive body of research has explored how performance can be further enhanced by the emergence of exciting technologies like chain-of-thought and self-refinement. In this paper, we introduce MMD-ERE, a multi-agent multi-sided debate approach for event relation extraction, which explores the understanding of event relations among different participants before and after debate. Specifically, for organizing the debate, participants are divided into multiple groups, each assigned its own debate topic, and the process effectively integrates both cooperation and confrontation. We also regard the audience as a crucial participant, as their conclusions from an observer’s perspective tend to be more objective. In the end, we explore the understanding of event relations among different participants before and after the debate. Experiments across various ERE tasks and LLMs demonstrate that MMD-ERE outperforms established baselines. Further analysis shows that debates can effectively enhance participants’ understanding of event relations.
Understanding events in texts is a core objective of natural language understanding, which requires detecting event occurrences, extracting event arguments, and analyzing inter-event relationships. However, due to the annotation challenges brought by task complexity, a large-scale dataset covering the full process of event understanding has long been absent. In this paper, we introduce MAVEN-Arg, which augments MAVEN datasets with event argument annotations, making the first all-in-one dataset supporting event detection, event argument extraction (EAE), and event relation extraction. As an EAE benchmark, MAVEN-Arg offers three main advantages: (1) a comprehensive schema covering 162 event types and 612 argument roles, all with expert-written definitions and examples; (2) a large data scale, containing 98,591 events and 290,613 arguments obtained with laborious human annotation; (3) the exhaustive annotation supporting all task variants of EAE, which annotates both entity and non-entity event arguments in document level. Experiments indicate that MAVEN-Arg is quite challenging for both fine-tuned EAE models and proprietary large language models (LLMs). Furthermore, to demonstrate the benefits of an all-in-one dataset, we preliminarily explore a potential application, future event prediction, with LLMs. MAVEN-Arg and codes can be obtained from https://github.com/THU-KEG/MAVEN-Argument.
Event relation extraction (ERE) is a critical and fundamental challenge for natural language processing. Existing work mainly focuses on directly modeling the entire document, which cannot effectively handle long-range dependencies and information redundancy. To address these issues, we propose a cluster-aware compression method for improving event relation extraction (TacoERE), which explores a compression-then-extraction paradigm. Specifically, we first introduce document clustering for modeling event dependencies. It splits the document into intra- and inter-clusters, where intra-clusters aim to enhance the relations within the same cluster, while inter-clusters attempt to model the related events at arbitrary distances. Secondly, we utilize cluster summarization to simplify and highlight important text content of clusters for mitigating information redundancy and event distance. We have conducted extensive experiments on both pre-trained language models, such as RoBERTa, and large language models, such as ChatGPT and GPT-4, on three ERE datasets, i.e., MAVEN-ERE, EventStoryLine and HiEve. Experimental results demonstrate that TacoERE is an effective method for ERE.
Event Detection (ED) is a critical task that aims to identify events of certain types in plain text. Neural models have achieved great success on ED, thus coming with a desire for higher interpretability. Existing works mainly exploit words or phrases of the input text to explain models’ inner mechanisms. However, for ED, the event structure, comprising of an event trigger and a set of arguments, are more enlightening clues to explain model behaviors. To this end, we propose a Trigger-Argument based Explanation method (TAE), which can utilize event structure knowledge to uncover a faithful interpretation for the existing ED models at neuron level. Specifically, we design group, sparsity, support mechanisms to construct the event structure from structuralization, compactness, and faithfulness perspectives. We evaluate our model on the large-scale MAVEN and the widely-used ACE 2005 datasets, and observe that TAE is able to reveal the process by which the model predicts. Experimental results also demonstrate that TAE can not only improve the interpretability on standard evaluation metrics, but also effectively facilitate the human understanding.
Recently graph-based methods have been adopted for Abstractive Text Summarization. However, existing graph-based methods only consider either word relations or structure information, which neglect the correlation between them. To simultaneously capture the word relations and structure information from sentences, we propose a novel Dual Graph network for Abstractive Sentence Summarization. Specifically, we first construct semantic scenario graph and semantic word relation graph based on FrameNet, and subsequently learn their representations and design graph fusion method to enhance their correlation and obtain better semantic representation for summary generation. Experimental results show our model outperforms existing state-of-the-art methods on two popular benchmark datasets, i.e., Gigaword and DUC 2004.
Sentence-level extractive text summarization aims to select important sentences from a given document. However, it is very challenging to model the importance of sentences. In this paper, we propose a novel Frame Semantic-Enhanced Sentence Modeling for Extractive Summarization, which leverages Frame semantics to model sentences from both intra-sentence level and inter-sentence level, facilitating the text summarization task. In particular, intra-sentence level semantics leverage Frames and Frame Elements to model internal semantic structure within a sentence, while inter-sentence level semantics leverage Frame-to-Frame relations to model relationships among sentences. Extensive experiments on two benchmark corpus CNN/DM and NYT demonstrate that our model outperforms six state-of-the-art methods significantly.
Sentence representation (SR) is the most crucial and challenging task in Machine Reading Comprehension (MRC). MRC systems typically only utilize the information contained in the sentence itself, while human beings can leverage their semantic knowledge. To bridge the gap, we proposed a novel Frame-based Sentence Representation (FSR) method, which employs frame semantic knowledge to facilitate sentence modelling. Specifically, different from existing methods that only model lexical units (LUs), Frame Representation Models, which utilize both LUs in frame and Frame-to-Frame (F-to-F) relations, are designed to model frames and sentences with attention schema. Our proposed FSR method is able to integrate multiple-frame semantic information to get much better sentence representations. Our extensive experimental results show that it performs better than state-of-the-art technologies on machine reading comprehension task.
Machine reading comprehension (MRC) is one of the most critical yet challenging tasks in natural language understanding(NLU), where both syntax and semantics information of text are essential components for text understanding. It is surprising that jointly considering syntax and semantics in neural networks was never formally reported in literature. This paper makes the first attempt by proposing a novel Syntax and Frame Semantics model for Machine Reading Comprehension (SS-MRC), which takes full advantage of syntax and frame semantics to get richer text representation. Our extensive experimental results demonstrate that SS-MRC performs better than ten state-of-the-art technologies on machine reading comprehension task.