Yizhe Huang


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
ECom-Bench: Can LLM Agent Resolve Real-World E-commerce Customer Support Issues?
Haoxin Wang | Xianhan Peng | Huang Cheng | Yizhe Huang | Ming Gong | Chenghan Yang | Yang Liu | Jiang Lin
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track

In this paper, we introduce , the first benchmark framework for evaluating LLM agent with multimodal capabilities in the e-commerce customer support domain. ECom-Bench features dynamic user simulation based on persona information collected from real e-commerce customer interactions and a realistic task dataset derived from authentic e-commerce dialogues. These tasks, covering a wide range of business scenarios, are designed to reflect real-world complexities, making highly challenging. For instance, even advanced models like GPT-4o achieve only a 10–20% pass3 metric in our benchmark, highlighting the substantial difficulties posed by complex e-commerce scenarios. The code and data have been made publicly available at https://github.com/XiaoduoAILab/ECom-Bench to facilitate further research and development in this domain.