Yiyang Qi


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Retrieval over Classification: Integrating Relation Semantics for Multimodal Relation Extraction
Lei Hei | Tingjing Liao | Peiyingxin | Yiyang Qi | Jiaqi Wang | Ruiting Li | Feiliang Ren
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Relation extraction (RE) aims to identify semantic relations between entities in unstructured text. Although recent work extends traditional RE to multimodal scenarios, most approaches still adopt classification-based paradigms with fused multimodal features, representing relations as discrete labels. This paradigm has two significant limitations: (1) it overlooks structural constraints like entity types and positional cues, and (2) it lacks semantic expressiveness for fine-grained relation understanding. We propose **R**etrieval **O**ver **C**lassification (ROC), a novel framework that reformulates multimodal RE as a retrieval task driven by relation semantics. ROC integrates entity type and positional information through a multimodal encoder, expands relation labels into natural language descriptions using a large language model, and aligns entity-relation pairs via semantic similarity-based contrastive learning. Experiments show that our method achieves state-of-the-art performance on the benchmark datasets MNRE and MORE and exhibits stronger robustness and interpretability.