YiTian Ding


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Gender Bias in Large Language Models across Multiple Languages: A Case Study of ChatGPT
YiTian Ding | Jinman Zhao | Chen Jia | Yining Wang | Zifan Qian | Weizhe Chen | Xingyu Yue
Proceedings of the 5th Workshop on Trustworthy NLP (TrustNLP 2025)

With the growing deployment of large language models (LLMs) across various applications, assessing the influence of gender biases embedded in LLMs becomes crucial. The topic of gender bias within the realm of natural language processing (NLP) has gained considerable focus, particularly in the context of English. Nonetheless, the investigation of gender bias in languages other than English is still relatively under-explored and insufficiently analyzed. In this work, We examine gender bias in LLMs-generated outputs for different languages. We use three measurements: 1) gender bias in selecting descriptive words given the gender-related context. 2) gender bias in selecting gender-related pronouns (she/he) given the descriptive words. 3) gender bias in the topics of LLM-generated dialogues. We investigate the outputs of the GPT series of LLMs in various languages using our three measurement methods. Our findings revealed significant gender biases across all the languages we examined.