This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
YishengXiao
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
BERT-family have been increasingly explored for adaptation to scenarios beyond language understanding tasks, with more recent efforts focused on enabling them to become good instruction followers. These explorations have endowed BERT-family with new roles and human expectations, showcasing their potential on par with current state-of-the-art (SOTA) large language models (LLMs). However, several certain shortcomings in previous BERT-family, such as the relatively sub-optimal training corpora, learning procedure, and model architecture, all impede the further advancement of these models for serving as general and competitive LLMs. Therefore, we aim to address these deficiencies in this paper. Our study not only introduces a more suitable pre-training task that helps BERT-family excel in wider applications to realize generality but also explores the integration of cutting-edge technologies into our model to further enhance their capabilities. Our final models, termed **Bi**directional **G**eneral **L**anguage **M**odels (**BiGLM**), exhibit performance levels comparable to current SOTA LLMs across a spectrum of tasks. Moreover, we conduct detailed analyses to study the effects of scaling and training corpora for BiGLM. To the best of our knowledge, our work represents the early attempt to offer a recipe for building novel types of scalable, general, and competitive LLMs that diverge from current autoregressive modeling methodology. Our codes and models are available on Github.
Iterative non-autoregressive (NAR) models share a spirit of mixed autoregressive (AR) and fully NAR models, seeking a balance between generation quality and inference efficiency. These models have recently demonstrated impressive performance in varied generation tasks, surpassing the autoregressive Transformer. However, they also face several challenges that impede further development. In this work, we target building more efficient and competitive iterative NAR models. Firstly, we produce two simple metrics to identify the potential problems existing in current refinement processes, and look back on the various iterative NAR models to find the key factors for realizing our purpose. Subsequently, based on the analyses of the limitations of previous inference algorithms, we propose a simple yet effective strategy to conduct efficient refinements without performance declines. Experiments on five widely used datasets show that our final models set the new state-of-the-art performance compared to all previous NAR models, even with fewer decoding steps, and outperform AR Transformer by around one BLEU on average. Our codes and models are available on Github.
Rather than merely to retain previously acquired generalization, achieving synergistic improvements between generalization and domain specialization in foundation models remains a significant challenge in both pre-training and post-training. As an alternative, we propose a test-time cross-domain knowledge integration method, Mixture of Multi-domain Agents (MMA), which dynamically combines the outputs of general-purpose and domain-specific models to enhance their performance on complex, domain‐specific tasks. MMA formulates the integration process as a search problem, using Monte Carlo Tree Search (MCTS) to find the path that optimally harmonizes the respective strengths of different models in generalization and domain-specific knowledge. In addition, We design specific action spaces to control the knowledge integration between multiple models, and cross-inspection reward is introduced to fairly score strategies in different domains. Experiments in diverse domains show that MMA can effectively combine the strengths of different models to enhance their performance. For instance, in legal tests, the average performance of all tasks increased from 42.57% to 53.68%. In financial tests, it improved from 56.01% to 62.68%.
Recent generative large language models (LLMs) have exhibited incredible instruction-following capabilities while keeping strong task completion ability, even without task-specific fine-tuning. Some works attribute this to the bonus of the new scaling law, in which the continuous improvement of model capacity yields emergent capabilities, e.g., reasoning and universal generalization. However, we point out that recent LLMs still show shortcut learning behavior, where the models tend to exploit spurious correlations between non-robust features and labels for prediction, which might lead to overestimating model capabilities. LLMs memorize more complex spurious correlations (i.e., task ↔ feature ↔ label) compared with that learned from previous pre-training and task-specific fine-tuning paradigm (i.e., feature ↔ label). Based on our findings, we propose FSLI, a framework for encouraging LLMs to Forget Spurious correlations and Learn from In-context information. Experiments on three tasks show that FSFI can effectively mitigate shortcut learning. Besides, we argue not to overestimate the capabilities of LLMs and conduct evaluations in more challenging and complete test scenarios.
Non-autoregressive models have been widely used for various text generation tasks to accelerate the inference process but at the cost of generation quality to some extent. To achieve a good balance between inference speedup and generation quality, iterative NAR models like CMLM and Disco are proposed. Researchers have made much follow-up progress based on them, and some recent iterative models can achieve very promising performance while maintaining significant speedup. In this paper, we give more insights into iterative NAR models by exploring the anisotropic problem, i.e., the representations of distinct predicted target tokens are similar and indiscriminative. Upon the confirmation of the anisotropic problem in iterative NAR models, we first analyze the effectiveness of the contrastive learning method and further propose the Look Neighbors strategy to enhance the learning of token representations during training. Experiments on 4 WMT datasets show that our methods consistently improve the performance as well as alleviate the anisotropic problem of the conditional masked language model, even outperforming the current SoTA result on WMT14 EN → DE.