Yishan Wang


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Your Mileage May Vary: How Empathy and Demographics Shape Human Preferences in LLM Responses
Yishan Wang | Amanda Cercas Curry | Flor Miriam Plaza-del-Arco
Findings of the Association for Computational Linguistics: EMNLP 2025

As large language models (LLMs) increasingly assist in subjective decision-making (e.g., moral reasoning, advice), it is critical to understand whose preferences they align with—and why. While prior work uses aggregate human judgments, demographic variation and its linguistic drivers remain underexplored. We present a comprehensive analysis of how demographic background and empathy level correlate with preferences for LLM-generated dilemma responses, alongside a systematic study of predictive linguistic features (e.g., agency, emotional tone). Our findings reveal significant demographic divides and identify markers (e.g., power verbs, tentative phrasing) that predict group-level differences. These results underscore the need for demographically informed LLM evaluation.