Yiqun Wang


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Tracing and Dissecting How LLMs Recall Factual Knowledge for Real World Questions
Yiqun Wang | Chaoqun Wan | Sile Hu | Yonggang Zhang | Xiang Tian | Yaowu Chen | Xu Shen | Jieping Ye
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent advancements in large language models (LLMs) have shown promising ability to perform commonsense reasoning, bringing machines closer to human-like understanding. However, deciphering the internal reasoning processes of LLMs remains challenging due to the complex interdependencies among generated tokens, especially in practical question-answering. In this study, we introduce a two-dimensional analysis framework—comprising token back-tracing and individual token decoding—to uncover how LLMs conduct factual knowledge recall. Through explanatory analysis of three typical reasoning datasets, we identify a consistent three-phase pattern: Subject Augmentation and Broadcasting, Object Retrieval and Reranking, and Conclusion Fusion and Generation. Our findings reveal that LLMs do not lack relevant knowledge but struggle to select the most accurate information based on context during the retrieval and rerank phase. Leveraging these findings, we apply representation engineering and selective fine-tuning to target specific modules responsible for retrieval and rerank errors. Experimental results show large improvements in response accuracy for both in-domain and out-of-domain settings, validating the rationality of the interpreting result.