Yinpei Su


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2021

pdf bib
TA-MAMC at SemEval-2021 Task 4: Task-adaptive Pretraining and Multi-head Attention for Abstract Meaning Reading Comprehension
Jing Zhang | Yimeng Zhuang | Yinpei Su
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

This paper describes our system used in the SemEval-2021 Task4 Reading Comprehension of Abstract Meaning, achieving 1st for subtask 1 and 2nd for subtask 2 on the leaderboard. We propose an ensemble of ELECTRA-based models with task-adaptive pretraining and a multi-head attention multiple-choice classifier on top of the pre-trained model. The main contributions of our system are 1) revealing the performance discrepancy of different transformer-based pretraining models on the downstream task, 2) presentation of an efficient method to generate large task-adaptive corpora for pretraining. We also investigated several pretraining strategies and contrastive learning objectives. Our system achieves a test accuracy of 95.11 and 94.89 on subtask 1 and subtask 2 respectively.