This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
YingluLi
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
End-to-end automatic speech recognition (ASR) systems often struggle to recognize rare name entities, such as personal names, organizations and terminologies that are not frequently encountered in the training data. This paper presents Contextual Biasing Whisper (CB-Whisper), a novel ASR system based on OpenAI’s Whisper model that can recognize user-defined name entities by performing open-vocabulary keyword-spotting (KWS) before the decoder. The KWS module leverages text-to-speech (TTS) techniques and a convolutional neural network (CNN) classifier to match the features between the entities and the utterances. To integrate the recognized entities into the Whipser decoder and avoid hallucinations, we carefully crafted multiple prompts with spoken form hints. Experiments show that the KWS module based on Whisper encoder’s features can recognize unseen user-defined keywords effectively. More importantly, the proposed CB-Whisper substantially improves the mixed-error-rate (MER) and entity recall compared to the original Whisper model on three internal datasets and two publicly available datasets including Aishell and ACL datasets that cover English-only, Chinese-only, and code-switching scenarios.
The degree of semantic relatedness of two units of language has long been considered fundamental to understanding meaning. In this paper, we present the system of Huawei Translation Services Center (HW-TSC) for Task 1 of SemEval 2024, which aims to automatically measure the semantic relatedness of sentence pairs in African and Asian languages. The task dataset for this task covers about 14 different languages, These languages originate from five distinct language families and are predominantly spoken in Africa and Asia. For this shared task, we describe our proposed solutions, including ideas and the implementation steps of the task, as well as the outcomes of each experiment on the development dataset. To enhance the performance, we leverage these experimental outcomes and construct an ensemble one. Our results demonstrate that our system achieves impressive performance on test datasets in unsupervised track B and ranked first place for the Punjabi language pair.
Large Language Models (LLMs) have demonstrated impressive performance on many Natural Language Processing (NLP) tasks. However, their ability to solve more creative, lateral thinking puzzles remains relatively unexplored. In this work, we develop methods to enhance the lateral thinking and puzzle-solving capabilities of LLMs. We curate a dataset of word-type and sentence-type brain teasers requiring creative problem-solving abilities beyond commonsense reasoning. We first evaluate the zero-shot performance of models like GPT-3.5 and GPT-4 on this dataset. To improve their puzzle-solving skills, we employ prompting techniques like providing reasoning clues and chaining multiple examples to demonstrate the desired thinking process. We also fine-tune the state-of-the-art Mixtral 7x8b LLM on ourdataset. Our methods enable the models to achieve strong results, securing 2nd and 3rd places in the brain teaser task. Our work highlights the potential of LLMs in acquiring complex reasoning abilities with the appropriate training. The efficacy of our approaches opens up new research avenues into advancing lateral thinking and creative problem-solving with AI systems.
In this article, we present an effective system for semeval-2024 task 5. The task involves assessing the feasibility of a given solution in civil litigation cases based on relevant legal provisions, issues, solutions, and analysis. This task demands a high level of proficiency in U.S. law and natural language reasoning. In this task, we designed a self-eval LLM system that simultaneously performs reasoning and self-assessment tasks. We created a confidence interval and a prompt instructing the LLM to output the answer to a question along with its confidence level. We designed a series of experiments to prove the effectiveness of the self-eval mechanism. In order to avoid the randomness of the results, the final result is obtained by voting on three results generated by the GPT-4. Our submission was conducted under zero-resource setting, and we achieved first place in the task with an F1-score of 0.8231 and an accuracy of 0.8673.
In this paper, we present an effective method for TextGraphs-17 Shared Task. This task requires selecting an entity from the candidate entities that is relevant to the given question and answer. The selection process is aided by utilizing the shortest path graph in the knowledge graph, connecting entities in the query to the candidate entity. This task aims to explore how to enhance LLMs output with KGs, although current LLMs have certain logical reasoning capabilities, they may not be certain about their own outputs, and the answers they produce may be correct by chance through incorrect paths. In this case, we have introduced a LLM prompt design strategy based on self-ranking and emotion. Specifically, we let the large model score its own answer choices to reflect its confidence in the answer. Additionally, we add emotional incentives to the prompts to encourage the model to carefully examine the questions. Our submissions was conducted under zero-resource setting, and we achieved the second place in the task with an F1-score of 0.8321.
This paper describes our work on the IWSLT2023 Speech-to-Speech task. Our proposed cascaded system consists of an ensemble of Conformer and S2T-Transformer-based ASR models, a Transformer-based MT model, and a Diffusion-based TTS model. Our primary focus in this competition was to investigate the modeling ability of the Diffusion model for TTS tasks in high-resource scenarios and the role of TTS in the overall S2S task. To this end, we proposed DTS, an end-to-end diffusion-based TTS model that takes raw text as input and generates waveform by iteratively denoising on pure Gaussian noise. Compared to previous TTS models, the speech generated by DTS is more natural and performs better in code-switching scenarios. As the training process is end-to-end, it is relatively straightforward. Our experiments demonstrate that DTS outperforms other TTS models on the GigaS2S benchmark, and also brings positive gains for the entire S2S system.
Recently, ChatGPT has shown promising results for Machine Translation (MT) in general domains and is becoming a new paradigm for translation. In this paper, we focus on how to apply ChatGPT to domain-specific translation and propose to leverage Multilingual Knowledge Graph (MKG) to help ChatGPT improve the domain entity translation quality. To achieve this, we extract the bilingual entity pairs from MKG for the domain entities that are recognized from source sentences. We then introduce these pairs into translation prompts, instructing ChatGPT to use the correct translations of the domain entities. To evaluate the novel MKG method for ChatGPT, we conduct comparative experiments on three Chinese-English (zh-en) test datasets constructed from three specific domains, of which one domain is from biomedical science, and the other two are from the Information and Communications Technology (ICT) industry — Visible Light Communication (VLC) and wireless domains. Experimental results demonstrate that both the overall translation quality of ChatGPT (+6.21, +3.13 and +11.25 in BLEU scores) and the translation accuracy of domain entities (+43.2%, +30.2% and +37.9% absolute points) are significantly improved with MKG on the three test datasets.
In this paper, we describe the multi strategy system for SemEval-2022 Task 7, This task aims to determine whether a given statement is supported by one or two Clinical Trial reports, and to identify evidence that supports the statement. This is a task that requires high natural language inference capabilities. In Subtask 1, we compare our strategy based on prompt learning and ChatGPT with a baseline constructed using BERT in zero-shot setting, and validate the effectiveness of our strategy. In Subtask 2, we fine-tune DeBERTaV3 for classification without relying on the results from Subtask 1, and we observe that early stopping can effectively prevent model overfitting, which performs well in Subtask 2. In addition, we did not use any ensemble strategies. Ultimately, we achieved the 10th place in Subtask 1 and the 2nd place in Subtask 2.
The paper presents the submission by HW-TSC in the WMT 2023 Automatic Post Editing (APE) shared task for the English-Marathi (En-Mr) language pair. Our method encompasses several key steps. First, we pre-train an APE model by utilizing synthetic APE data provided by the official task organizers. Then, we fine-tune the model by employing real APE data. For data augmentation, we incorporate candidate translations obtained from an external Machine Translation (MT) system. Furthermore, we integrate the En-Mr parallel corpus from the Flores-200 dataset into our training data. To address the overfitting issue, we employ R-Drop during the training phase. Given that APE systems tend to exhibit a tendency of ‘over-correction’, we employ a sentence-level Quality Estimation (QE) system to select the final output, deciding between the original translation and the corresponding output generated by the APE model. Our experiments demonstrate that pre-trained APE models are effective when being fine-tuned with the APE corpus of a limited size, and the performance can be further improved with external MT augmentation. Our approach improves the TER and BLEU scores on the development set by -2.42 and +3.76 points, respectively.
Autoregressive (AR) and Non-autoregressive (NAR) models have their own superiority on the performance and latency, combining them into one model may take advantage of both. Current combination frameworks focus more on the integration of multiple decoding paradigms with a unified generative model, e.g. Masked Language Model. However, the generalization can be harmful on the performance due to the gap between training objective and inference. In this paper, we aim to close the gap by preserving the original objective of AR and NAR under a unified framework. Specifically, we propose the Directional Transformer (Diformer) by jointly modelling AR and NAR into three generation directions (left-to-right, right-to-left and straight) with a newly introduced direction variable, which works by controlling the prediction of each token to have specific dependencies under that direction. The unification achieved by direction successfully preserves the original dependency assumption used in AR and NAR, retaining both generalization and performance. Experiments on 4 WMT benchmarks demonstrate that Diformer outperforms current united-modelling works with more than 1.5 BLEU points for both AR and NAR decoding, and is also competitive to the state-of-the-art independent AR and NAR models.
This paper describes the HW-TSC’s designation of the Offline Speech Translation System submitted for IWSLT 2022 Evaluation. We explored both cascade and end-to-end system on three language tracks (en-de, en-zh and en-ja), and we chose the cascade one as our primary submission. For the automatic speech recognition (ASR) model of cascade system, there are three ASR models including Conformer, S2T-Transformer and U2 trained on the mixture of five datasets. During inference, transcripts are generated with the help of domain controlled generation strategy. Context-aware reranking and ensemble based anti-interference strategy are proposed to produce better ASR outputs. For machine translation part, we pretrained three translation models on WMT21 dataset and fine-tuned them on in-domain corpora. Our cascade system shows competitive performance than the known offline systems in the industry and academia.
This paper presents our work in the participation of IWSLT 2022 simultaneous speech translation evaluation. For the track of text-to-text (T2T), we participate in three language pairs and build wait-k based simultaneous MT (SimulMT) model for the task. The model was pretrained on WMT21 news corpora, and was further improved with in-domain fine-tuning and self-training. For the speech-to-text (S2T) track, we designed both cascade and end-to-end form in three language pairs. The cascade system is composed of a chunking-based streaming ASR model and the SimulMT model used in the T2T track. The end-to-end system is a simultaneous speech translation (SimulST) model based on wait-k strategy, which is directly trained on a synthetic corpus produced by translating all texts of ASR corpora into specific target language with an offline MT model. It also contains a heuristic sentence breaking strategy, preventing it from finishing the translation before the the end of the speech. We evaluate our systems on the MUST-C tst-COMMON dataset and show that the end-to-end system is competitive to the cascade one. Meanwhile, we also demonstrate that the SimulMT model can be efficiently optimized by these approaches, resulting in the improvements of 1-2 BLEU points.
The paper presents the HW-TSC’s pipeline and results of Offline Speech to Speech Translation for IWSLT 2022. We design a cascade system consisted of an ASR model, machine translation model and TTS model to convert the speech from one language into another language(en-de). For the ASR part, we find that better performance can be obtained by ensembling multiple heterogeneous ASR models and performing reranking on beam candidates. And we find that the combination of context-aware reranking strategy and MT model fine-tuned on the in-domain dataset is helpful to improve the performance. Because it can mitigate the problem that the inconsistency in transcripts caused by the lack of context. Finally, we use VITS model provided officially to reproduce audio files from the translation hypothesis.
In the paper, we describe a unified system for task 3 of SemEval-2022. The task aims to recognize the semantic structures of sentences by providing two nominal arguments and to evaluate the degree of taxonomic relations. We utilise the strategy that adding language prefix tag in the training set, which is effective for the model. We split the training set to avoid the translation information to be learnt by the model. For the task, we propose a unified model fine-tuned on the multilingual pretrained model, XLM-RoBERTa. The model performs well in subtask 1 (the binary classification subtask). In order to verify whether our model could also perform better in subtask 2 (the regression subtask), the ranking score is transformed into classification labels by an up-sampling strategy. With the ensemble strategy, the performance of our model can be also improved. As a result, the model obtained the second place for subtask 1 and subtask 2 in the competition evaluation.
This paper describes the system for the identifying Plausible Clarifications of Implicit and Underspecified Phrases. This task was set up as an English cloze task, in which clarifications are presented as possible fillers and systems have to score how well each filler plausibly fits in a given context. For this shared task, we propose our own solutions, including supervised proaches, unsupervised approaches with pretrained models, and then we use these models to build an ensemble model. Finally we get the 2nd best result in the subtask1 which is a classification task, and the 3rd best result in the subtask2 which is a regression task.
In this paper, we present the contribution of HW-TSC to WMT 2022 Metrics Shared Task. We propose one reference-based metric, HWTSC-EE-BERTScore*, and four referencefree metrics including HWTSC-Teacher-Sim, HWTSC-TLM, KG-BERTScore and CROSSQE. Among these metrics, HWTSC-Teacher-Sim and CROSS-QE are supervised, whereas HWTSC-EE-BERTScore*, HWTSC-TLM and KG-BERTScore are unsupervised. We use these metrics in the segment-level and systemlevel tracks. Overall, our systems achieve strong results for all language pairs on previous test sets and a new state-of-the-art in many sys-level case sets.
Quality estimation (QE) is a crucial method to investigate automatic methods for estimating the quality of machine translation results without reference translations. This paper presents Huawei Translation Services Center’s (HW-TSC’s) work called CrossQE in WMT 2022 QE shared tasks 1 and 2, namely sentence- and word- level quality prediction and explainable QE.CrossQE employes the framework of predictor-estimator for task 1, concretely with a pre-trained cross-lingual XLM-RoBERTa large as predictor and task-specific classifier or regressor as estimator. An extensive set of experimental results show that after adding bottleneck adapter layer, mean teacher loss, masked language modeling task loss and MC dropout methods in CrossQE, the performance has improved to a certain extent. For task 2, CrossQE calculated the cosine similarity between each word feature in the target and each word feature in the source by task 1 sentence-level QE system’s predictor, and used the inverse value of maximum similarity between each word in the target and the source as the word translation error risk value. Moreover, CrossQE has outstanding performance on QE test sets of WMT 2022.