This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
YingjieHan
Also published as:
英杰 韩
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Automatic radiology report generation is pivotal in reducing the workload of radiologists, while simultaneously improving diagnostic accuracy and operational efficiency. Current methods face significant challenges, including the effective alignment of medical visual features with textual features and the mitigation of data bias. In this paper, we propose a method for radiology report generation that utilizes a Cross-modal Enhancement and Alignment Adapter (CmEAA) to connect a vision encoder with a frozen large language model. Specifically, we introduce two novel modules within CmEAA: Cross-modal Feature Enhancement (CFE) and Neural Mutual Information Aligner (NMIA). CFE extracts observation-related contextual features to enhance the visual features of lesions and abnormal regions in radiology images through a cross-modal enhancement transformer. NMIA maximizes neural mutual information between visual and textual representations within a low-dimensional alignment embedding space during training and provides potential global alignment visual representations during inference. Additionally, a weights generator is designed to enable the dynamic adaptation of cross-modal enhanced features and vanilla visual features. Experimental results on two prevailing datasets, namely, IU X-Ray and MIMIC-CXR, demonstrate that the proposed model outperforms previous state-of-the-art methods.
Text-to-SQL, which maps natural language to SQL queries, has benefited greatly from recent advances in Large Language Models (LLMs). While LLMs offer various paradigms for this task, including prompting and supervised fine-tuning (SFT), SFT approaches still face challenges such as complex multi-stage pipelines and poor robustness to noisy schema information. To address these limitations, we present JOLT-SQL, a streamlined single-stage SFT framework that jointly optimizes schema linking and SQL generation via a unified loss. JOLT-SQL employs discriminative schema linking, enhanced by local bidirectional attention, alongside a confusion-aware noisy schema sampling strategy with selective attention to improve robustness under noisy schema conditions. Experiments on the Spider and BIRD benchmarks demonstrate that JOLT-SQL achieves state-of-the-art execution accuracy among comparable-size open-source models, while significantly improving both training and inference efficiency.
Chinese Grammatical Error Diagnosis (CGED) is a natural language processing task for the NLPTEA6 workshop. The goal of this task is to automatically diagnose grammatical errors in Chinese sentences written by L2 learners. This paper proposes a RoBERTa-BiLSTM-CRF model to detect grammatical errors in sentences. Firstly, RoBERTa model is used to obtain word vectors. Secondly, word vectors are input into BiLSTM layer to learn context features. Last, CRF layer without hand-craft features work for processing the output by BiLSTM. The optimal global sequences are obtained according to state transition matrix of CRF and adjacent labels of training data. In experiments, the result of RoBERTa-CRF model and ERNIE-BiLSTM-CRF model are compared, and the impacts of parameters of the models and the testing datasets are analyzed. In terms of evaluation results, our recall score of RoBERTa-BiLSTM-CRF ranks fourth at the detection level.
In the process of learning Chinese, second language learners may have various grammatical errors due to the negative transfer of native language. This paper describes our submission to the NLPTEA 2020 shared task on CGED. We present a hybrid system that utilizes both detection and correction stages. The detection stage is a sequential labelling model based on BiLSTM-CRF and BERT contextual word representation. The correction stage is a hybrid model based on the n-gram and Seq2Seq. Without adding additional features and external data, the BERT contextual word representation can effectively improve the performance metrics of Chinese grammatical error detection and correction.
In the process of learning and using Chinese, foreigners may have grammatical errors due to negative migration of their native languages. Currently, the computer-oriented automatic detection method of grammatical errors is not mature enough. Based on the evaluating task — CGED2016, we select and analyze the classification model and design feature extraction method to obtain grammatical errors including Mission(M), Disorder(W), Selection (S) and Redundant (R) automatically. The experiment results based on the dynamic corpus of HSK show that the Chinese grammatical error automatic detection method, which uses CRF as classification model and n-gram as feature extraction method. It is simple and efficient which play a positive effect on the research of Chinese grammatical error automatic detection and also a supporting and guiding role in the teaching of Chinese as a foreign language.