Ying Li

Other people with similar names: Ying Li, Ying Li

Unverified author pages with similar names: Ying Li


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
SLiNT: Structure-aware Language Model with Injection and Contrastive Training for Knowledge Graph Completion
Mengxue Yang | Chun Yang | Jiaqi Zhu | Jiafan Li | Jingqi Zhang | Yuyang Li | Ying Li
Findings of the Association for Computational Linguistics: EMNLP 2025

Link prediction in knowledge graphs (KGs) requires integrating structural information and semantic context to infer missing entities. While large language models (LLMs) offer strong generative reasoning capabilities, their limited exploitation of structural signals often results in *structural sparsity* and *semantic ambiguity*, especially under incomplete or zero-shot settings. To address these challenges, we propose **SLiNT** (**S**tructure-aware **L**anguage model with **I**njection and co**N**trastive **T**raining), a modular framework that injects KG-derived structural context into a frozen LLM backbone with lightweight LoRA-based adaptation for robust link prediction. Specifically, **Structure-Guided Neighborhood Enhancement (SGNE)** retrieves pseudo-neighbors to enrich sparse entities and mitigate missing context; **Dynamic Hard Contrastive Learning (DHCL)** introduces fine-grained supervision by interpolating hard positives and negatives to resolve entity-level ambiguity; and **Gradient-Decoupled Dual Injection (GDDI)** performs token-level structure-aware intervention while preserving the core LLM parameters. Experiments on WN18RR and FB15k-237 show that SLiNT achieves superior or competitive performance compared with both embedding-based and generation-based baselines, demonstrating the effectiveness of structure-aware representation learning for scalable knowledge graph completion.