Yin Huang


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
PrismRAG: Boosting RAG Factuality with Distractor Resilience and Strategized Reasoning
Mohammad Kachuee | Teja Gollapudi | Minseok Kim | Yin Huang | Kai Sun | Xiao Yang | Jiaqi Wang | Nirav Shah | Yue Liu | Aaron Colak | Anuj Kumar | Wen-tau Yih | Xin Luna Dong
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track

Retrieval-augmented generation (RAG) often falls short when retrieved context includes confusing semi-relevant passages, or when answering questions require deep contextual understanding and reasoning. We propose an efficient fine-tuning framework, called PrismRAG, that (i) trains the model with distractor-aware QA pairs mixing gold evidence with subtle distractor passages, and (ii) instills reasoning-centric habits that make the LLM plan, rationalize, and synthesize without relying on extensive human engineered instructions. Evaluated across 12 open-book RAG QA benchmarks spanning diverse application domains and scenarios, PrismRAG improves average factuality by 5.4%, outperforming state-of-the-art solutions. Our method is being deployed in production.