Yijing Wu


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Self-training Strategies for Sentiment Analysis: An Empirical Study
Haochen Liu | Sai Rallabandi | Yijing Wu | Parag Dakle | Preethi Raghavan
Findings of the Association for Computational Linguistics: EACL 2024

Sentiment analysis is a crucial task in natural language processing that involves identifying and extracting subjective sentiment from text. Self-training has recently emerged as an economical and efficient technique for developing sentiment analysis models by leveraging a small amount of labeled data and a large amount of unlabeled data. However, given a set of training data, how to utilize them to conduct self-training makes a significant difference in the final performance of the model. We refer to this methodology as the self-training strategy. In this paper, we present an empirical study of various self-training strategies for sentiment analysis. First, we investigate the influence of the self-training strategy and hyper-parameters on the performance of traditional small language models (SLMs) in various few-shot settings. Second, we also explore the feasibility of leveraging large language models (LLMs) to help self-training. We propose and empirically compare several self-training strategies with the intervention of LLMs. Extensive experiments are conducted on three real-world sentiment analysis datasets.