Yiheng Zhou


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2019

pdf bib
A Dynamic Strategy Coach for Effective Negotiation
Yiheng Zhou | He He | Alan W Black | Yulia Tsvetkov
Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue

Negotiation is a complex activity involving strategic reasoning, persuasion, and psychology. An average person is often far from an expert in negotiation. Our goal is to assist humans to become better negotiators through a machine-in-the-loop approach that combines machine’s advantage at data-driven decision-making and human’s language generation ability. We consider a bargaining scenario where a seller and a buyer negotiate the price of an item for sale through a text-based dialogue. Our negotiation coach monitors messages between them and recommends strategies in real time to the seller to get a better deal (e.g., “reject the proposal and propose a price”, “talk about your personal experience with the product”). The best strategy largely depends on the context (e.g., the current price, the buyer’s attitude). Therefore, we first identify a set of negotiation strategies, then learn to predict the best strategy in a given dialogue context from a set of human-human bargaining dialogues. Evaluation on human-human dialogues shows that our coach increases the profits of the seller by almost 60%.