This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
YihaoLiu
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Tabular data are crucial in many fields and their understanding by large language models (LLMs) under high parameter efficiency paradigm is important. However, directly applying parameter-efficient fine-tuning (PEFT) techniques to tabular tasks presents significant challenges, particularly in terms of better table serialization and the representation of two-dimensional structured information within a one-dimensional sequence. To address this, we propose TableLoRA, a module designed to improve LLMs’ understanding of table structure during PEFT. It incorporates special tokens for serializing tables with special token encoder and uses 2D LoRA to encode low-rank information on cell positions. Experiments on four tabular-related datasets demonstrate that TableLoRA consistently outperforms vanilla LoRA and surpasses various table encoding methods tested in control experiments. These findings reveal that TableLoRA, as a table-specific LoRA, enhances the ability of LLMs to process tabular data effectively, especially in low-parameter settings, demonstrating its potential as a robust solution for handling table-related tasks.
Tabular data analysis is crucial in many scenarios, yet efficiently identifying relevant queries and results for new tables remains challenging due to data complexity, diverse analytical operations, and high-quality analysis requirements. To address these challenges, we aim to recommend query–code–result triplets tailored for new tables in tabular data analysis workflows. In this paper, we present TablePilot, a pioneering tabular data analysis framework leveraging large language models to autonomously generate comprehensive and superior analytical results without relying on user profiles or prior interactions. Additionally, we propose Rec-Align, a novel method to further improve recommendation quality and better align with human preferences. Experiments on DART, a dataset specifically designed for comprehensive tabular data analysis recommendation, demonstrate the effectiveness of our framework. Based on GPT-4o, the tuned TablePilot achieves 77.0% top-5 recommendation recall. Human evaluations further highlight its effectiveness in optimizing tabular data analysis workflows.
Large Language Models (LLMs) encounter challenges in efficiently answering long-text questions, as seen in applications like enterprise document analysis and financial report comprehension. While conventional solutions employ long-context processing or Retrieval-Augmented Generation (RAG), they suffer from prohibitive input expenses or incomplete information. Recent advancements adopt context compression and dynamic retrieval loops, but still sacrifice critical details or incur iterative costs. To address these limitations, we propose OkraLong, a novel framework that flexibly optimizes the entire processing workflow. Unlike prior static or coarse-grained adaptive strategies, OkraLong adopts fine-grained orchestration through three synergistic components: analyzer, organizer and executor. The analyzer characterizes the task states, which guide the organizer in dynamically scheduling the workflow. The executor carries out the execution and generates the final answer. Experimental results demonstrate that OkraLong not only enhances answer accuracy by 5.7%-41.2%, but also achieves cost savings of 1.3x-4.7x.