This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
YifanZhu
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Using effective generalization capabilities of vision language models (VLMs) in context-specific dynamic tasks for embodied artificial intelligence remains a significant challenge. Although supervised fine-tuned models can better align with the real physical world, they still exhibit sluggish responses and hallucination issues in dynamically changing environments, necessitating further alignment. Existing post-SFT methods, reliant on reinforcement learning and chain-of-thought (CoT) approaches, are constrained by sparse rewards and action-only optimization, resulting in low sample efficiency, poor consistency, and model degradation. To address these issues, this paper proposes Thought-Centric Preference Optimization (TCPO) for effective embodied decision-making. Specifically, TCPO introduces a stepwise preference-based optimization approach, transforming sparse reward signals into richer step sample pairs. It emphasizes the alignment of the model’s intermediate reasoning process, mitigating the problem of model degradation. Moreover, by incorporating Action Policy Consistency Constraint (APC), it further imposes consistency constraints on the model output. Experiments in the ALFWorld environment demonstrate an average success rate of **26.67%**, achieving a **6%** improvement over RL4VLM and validating the effectiveness of our approach in mitigating model degradation after fine-tuning. These results highlight the potential of integrating preference-based learning techniques with CoT processes to enhance the decision-making capabilities of vision-language models in embodied agents.
Multi-hop complex reasoning over incomplete knowledge graphs (KGs) has been extensively studied, but research on numerical knowledge graphs (NKGs) remains relatively limited. Recent approaches focus on separately encoding entities and numerical values, using neural networks to process query encodings for reasoning. However, in complex multi-hop reasoning tasks, numerical values are not merely symbols, and they carry specific semantics and logical relationships that must be accurately represented. The CNR-NST framework can perform binary operations on numerical attributes in NKGs, enabling it to infer new numerical attributes from existing knowledge. Our approach effectively handles up to 102 types of complex numerical reasoning queries. On three public datasets, CNR-NST demonstrates SOTA performance in complex numerical queries, achieving an average improvement of over 40% compared to existing methods. Notably, this work expands the query types for complex multi-hop numerical reasoning and introduces a new evaluation metric for numerical answers, which has been validated through comprehensive experiments.
Role-playing agents (RPAs) have attracted growing interest for their ability to simulate immersive and interactive characters. However, existing approaches primarily focus on static role profiles, overlooking the dynamic perceptual abilities inherent to humans. To bridge this gap, we introduce the concept of dynamic role profiles by incorporating video modality into RPAs. To support this, we construct Role-playing-Video60k, a large-scale, high-quality dataset comprising 60k videos and 700k corresponding dialogues. Based on this dataset, we develop a comprehensive RPA framework that combines adaptive temporal sampling with both dynamic and static role profile representations. Specifically, the dynamic profile is created by adaptively sampling video frames and feeding them to the LLM in temporal order, while the static profile consists of (1) character dialogues from training videos during fine-tuning, and (2) a summary context from the input video during inference. This joint integration enables RPAs to generate greater responses. Furthermore, we propose a robust evaluation method covering eight metrics. Experimental results demonstrate the effectiveness of our framework, highlighting the importance of dynamic role profiles in developing RPAs.
Large Language Models (LLMs)-based Multi-Agent Systems (MAS) exhibit remarkable problem-solving and task planning capabilities across diverse domains due to their specialized agentic roles and collaborative interactions. However, this also amplifies the severity of security risks under MAS attacks. To address this, we introduce MASTER, a novel security research framework for MAS, focusing on diverse Role configurations and Topological structures across various scenarios. MASTER offers an automated construction process for different MAS setups and an information-flow-based interaction paradigm. To tackle MAS security challenges in varied scenarios, we design a scenario-adaptive, extensible attack strategy utilizing role and topological information, which dynamically allocates targeted, domain-specific attack tasks for collaborative agent execution. Our experiments demonstrate that such an attack, leveraging role and topological information, exhibits significant destructive potential across most models. Additionally, we propose corresponding defense strategies, substantially enhancing MAS resilience across diverse scenarios. We anticipate that our framework and findings will provide valuable insights for future research into MAS security challenges.
Recent advances in Emotional Support Conversation (ESC) have improved emotional support generation by fine-tuning Large Language Models (LLMs) via Supervised Fine-Tuning (SFT). However, common psychological errors still persist. While Direct Preference Optimization (DPO) shows promise in reducing such errors through pairwise preference learning, its effectiveness in ESC tasks is limited by two key challenges: (1) Entangled data structure: Existing ESC data inherently entangles psychological strategies and response content, making it difficult to construct high-quality preference pairs; and (2) Optimization ambiguity: Applying vanilla DPO to such entangled pairwise data leads to ambiguous training objectives. To address these issues, we introduce Inferential Preference Mining (IPM) to construct high-quality preference data, forming the IPM-PrefDial dataset. Building upon this data, we propose a Decoupled ESC framework inspired by Gross’s Extended Process Model of Emotion Regulation, which decomposes the ESC task into two sequential subtasks: strategy planning and empathic response generation. Each was trained via SFT and subsequently enhanced by DPO to align with the psychological preference. Extensive experiments demonstrate that our Decoupled ESC framework outperforms baselines, reducing preference bias and improving response quality.
This project note describes challenges and procedures undertaken in annotating an audiovisual dataset capturing a multimodal situated collaborative construction task. In the task, all participants begin with different partial information, and must collaborate using speech, gesture, and action to arrive a solution that satisfies all individual pieces of private information. This rich data poses a number of annotation challenges, from small objects in a close space, to the implicit and multimodal fashion in which participants express agreement, disagreement, and beliefs. We discuss the data collection procedure, annotation schemas and tools, and future use cases.
We present TRACE, a novel system for live *common ground* tracking in situated collaborative tasks. With a focus on fast, real-time performance, TRACE tracks the speech, actions, gestures, and visual attention of participants, uses these multimodal inputs to determine the set of task-relevant propositions that have been raised as the dialogue progresses, and tracks the group’s epistemic position and beliefs toward them as the task unfolds. Amid increased interest in AI systems that can mediate collaborations, TRACE represents an important step forward for agents that can engage with multiparty, multimodal discourse.
Knowledge Base Question Answering (KBQA) aims to answer natural language questions over large-scale knowledge bases (KBs), which can be summarized into two crucial steps: knowledge retrieval and semantic parsing. However, three core challenges remain: inefficient knowledge retrieval, mistakes of retrieval adversely impacting semantic parsing, and the complexity of previous KBQA methods. To tackle these challenges, we introduce ChatKBQA, a novel and simple generate-then-retrieve KBQA framework, which proposes first generating the logical form with fine-tuned LLMs, then retrieving and replacing entities and relations with an unsupervised retrieval method, to improve both generation and retrieval more directly. Experimental results show that ChatKBQA achieves new state-of-the-art performance on standard KBQA datasets, WebQSP, and CWQ. This work can also be regarded as a new paradigm for combining LLMs with knowledge graphs (KGs) for interpretable and knowledge-required question answering.
Within Dialogue Modeling research in AI and NLP, considerable attention has been spent on “dialogue state tracking” (DST), which is the ability to update the representations of the speaker’s needs at each turn in the dialogue by taking into account the past dialogue moves and history. Less studied but just as important to dialogue modeling, however, is “common ground tracking” (CGT), which identifies the shared belief space held by all of the participants in a task-oriented dialogue: the task-relevant propositions all participants accept as true. In this paper we present a method for automatically identifying the current set of shared beliefs and ”questions under discussion” (QUDs) of a group with a shared goal. We annotate a dataset of multimodal interactions in a shared physical space with speech transcriptions, prosodic features, gestures, actions, and facets of collaboration, and operationalize these features for use in a deep neural model to predict moves toward construction of common ground. Model outputs cascade into a set of formal closure rules derived from situated evidence and belief axioms and update operations. We empirically assess the contribution of each feature type toward successful construction of common ground relative to ground truth, establishing a benchmark in this novel, challenging task.
This paper discusses the challenges of annotating the predicate-argument structure of Chinese verb compounds in Uniform Meaning Representation (UMR), a recent meaning representation framework that extends Abstract Meaning Representation (AMR) to cross-linguistic settings. The key issue is to decide whether to annotate the argument structure of a verb compound as a whole, or to annotate the argument structure of their component verbs as well as the relations between them. We examine different types of Chinese verb compounds, and propose how to annotate them based on the principle of compositionality, level of grammaticalization, and productivity of component verbs. We propose a solution to the practical problem of having to define the semantic roles for Chinese verb compounds that are quite open-ended by separating compositional verb compounds from verb compounds that are non-compositional or have grammaticalized verb components. For compositional verb compounds, instead of annotating the argument structure of the verb compound as a whole, we annotate the argument structure of the component verbs as well as the semantic relations between them as creating an exhaustive list of such verb compounds is infeasible. Verb compounds with grammaticalized verb components also tend to be productive and we represent grammaticalized verb compounds as either attributes of the primary verb or as relations.