This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Yifan EthanXu
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Retrieval-Augmented Generation (RAG) mitigates hallucination in Large Language Models (LLMs) by incorporating external data, with Knowledge Graphs (KGs) offering crucial information for question answering. Traditional Knowledge Graph Question Answering (KGQA) methods rely on semantic parsing, which typically retrieves knowledge strictly necessary for answer generation, thus often suffer from low coverage due to rigid schema requirements and semantic ambiguity. We present KERAG, a novel KG-based RAG pipeline that enhances QA coverage by retrieving a broader subgraph likely to contain relevant information. Our retrieval-filtering-summarization approach, combined with fine-tuned LLMs for Chain-of-Thought reasoning on knowledge sub-graphs, reduces noises and improves QA for both simple and complex questions. Experiments demonstrate that KERAG surpasses state-of-the-art solutions by about 7% in quality and exceeds GPT-4o (Tool) by 10-21%.
Vision-extended LLMs have made significant strides in Visual Question Answering (VQA). Despite these advancements, VLLMs still encounter substantial difficulties in handling queries involving long-tail entities, with a tendency to produce erroneous or hallucinated responses. In this work, we introduce a novel evaluative benchmark named SnapNTell, specifically tailored for entity-centric VQA. This task aims to test the models’ capabilities in identifying entities and providing detailed, entity-specific knowledge. We have developed the SnapNTell Dataset, distinct from traditional VQA datasets: (1) It encompasses a wide range of categorized entities, each represented by images and explicitly named in the answers; (2) It features QA pairs that require extensive knowledge for accurate responses. The dataset is organized into 22 major categories, containing 7,568 unique entities in total. For each entity, we curated 10 illustrative images and crafted 10 knowledge-intensive QA pairs. To address this novel task, we devised a scalable, efficient, and transparent retrieval-augmented multimodal LLM. Our approach markedly outperforms existing methods on the SnapNTell dataset, achieving a 66.5% improvement in the BELURT score.
Product catalogs, conceptually in the form of text-rich tables, are self-reported by individual retailers and thus inevitably contain noisy facts. Verifying such textual attributes in product catalogs is essential to improve their reliability. However, popular methods for processing free-text content, such as pre-trained language models, are not particularly effective on structured tabular data since they are typically trained on free-form natural language texts. In this paper, we present Tab-Cleaner, a model designed to handle error detection over text-rich tabular data following a pre-training / fine-tuning paradigm. We train Tab-Cleaner on a real-world Amazon Product Catalog table w.r.t millions of products and show improvements over state-of-the-art methods by 16\% on PR AUC over attribute applicability classification task and by 11\% on PR AUC over attribute value validation task.