Yifan Duan


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
ORPP: Self-Optimizing Role-playing Prompts to Enhance Language Model Capabilities
Yifan Duan | Yihong Tang | Kehai Chen | Liqiang Nie | Min Zhang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

High-quality prompts are crucial for eliciting outstanding performance from large language models (LLMs) on complex tasks. Existing research has explored model-driven strategies for prompt optimization. However, these methods often suffer from high computational overhead or require strong optimization capabilities from the model itself, which limits their broad applicability.To address these challenges, we propose ORPP, a framework that enhances model performance by optimizing and generating role-playing prompts. The core idea of ORPP is to confine the prompt search space to role-playing scenarios, thereby fully activating the model’s intrinsic capabilities through carefully crafted, high-quality role-playing prompts. Specifically, ORPP first performs iterative optimization on a small subset of training samples to generate high-quality role-playing prompts. Then, leveraging the model’s few-shot learning capability, it transfers the optimization experience to efficiently generate suitable prompts for the remaining samples.Our experimental results show that ORPP not only matches but in most cases surpasses existing mainstream prompt optimization methods in terms of performance. Notably, ORPP suggests great “plug-and-play” capability. In most cases, it can be integrated with various other prompt methods and further enhance their effectiveness.