Syntactic language models (SLMs) enhance Transformers by incorporating syntactic biases through the modeling of linearized syntactic parse trees alongside surface sentences. This paper focuses on compositional SLMs that are based on constituency parse trees and contain explicit bottom-up composition of constituent representations. We identify key aspects of design choices in existing compositional SLMs and propose a unified framework encompassing both existing models and novel variants. We conduct a comprehensive empirical evaluation of all the variants in our framework across language modeling, syntactic generalization, summarization, and inference efficiency. Based on the experimental results, we make multiple recommendations on the design of compositional SLMs. Our code is released at https://github.com/zhaoyd1/compositional_SLMs.
The rapid advancement of large language models (LLMs) has transformed the landscape of agentic information seeking capabilities through the integration of tools such as search engines and web browsers. However, current mainstream approaches for enabling LLM web search proficiency face significant challenges: supervised fine-tuning struggles with data production in open-search domains, while RL converges quickly, limiting their data utilization efficiency. To address these issues, we propose EvolveSearch, a novel iterative self-evolution framework that combines SFT and RL to enhance agentic web search capabilities without any external human-annotated reasoning data. Extensive experiments on seven multi-hop question-answering (MHQA) benchmarks demonstrate that EvolveSearch consistently improves performance across iterations, ultimately achieving an average improvement of 4.7% over the current state-of-the-art across seven benchmarks, opening the door to self-evolution agentic capabilities in open web search domains.
Syntactic Transformer language models aim to achieve better generalization through simultaneously modeling syntax trees and sentences. While prior work has been focusing on adding constituency-based structures to Transformers, we introduce Dependency Transformer Grammars (DTGs), a new class of Transformer language model with explicit dependency-based inductive bias. DTGs simulate dependency transition systems with constrained attention patterns by modifying attention masks, incorporate the stack information through relative positional encoding, and augment dependency arc representation with a combination of token embeddings and operation embeddings. When trained on a dataset of sentences annotated with dependency trees, DTGs achieve better generalization while maintaining comparable perplexity with Transformer language model baselines. DTGs also outperform recent constituency-based models, showing that dependency can better guide Transformer language models. Our code is released at https://github.com/zhaoyd1/Dep_Transformer_Grammars.