This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
YiPan
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
When aligning large language models (LLMs), their performance across various tasks (such as being helpful, harmless, and honest) is heavily influenced by the composition of the training data. However, it is difficult to determine what mixture of data should be used to produce a model with strong performance across all tasks. Existing approaches rely on large ablation studies, heuristics, or human intuition, though these can be prohibitively expensive and suboptimal. We study this problem in the context of preference optimization via DPO and propose a novel and theoretically justified algorithm, AutoMixAlign (AMA), that adaptively mixes datasets during LLM training to balance performance across multiple tasks. AMA first trains specialist models for each task to determine losses that corresponding to strong task performance. Next, AMA trains a generalist model using a novel minimax optimization that prioritizes tasks for which generalist model losses are furthest from specialist model losses. We introduce two algorithms to optimize this problem: (1) AMA-R adaptively reweights the objective to prioritize tasks, and (2) AMA-S adaptively adjusts how much data is sampled from each task to prioritize tasks. Both algorithms achieve a convergence rate of O(1/√T) in the convex case. AMA-R’s convergence result immediately follows from Sagawa et. al, 2019, and we provide a convergence proof for AMA-S using techniques from online learning such as EXP3 (Auer et. al, 2002). We evaluate AMA on several multitask alignment setups, and observe that AMA outperforms the standard alignment approach which simply optimizes the total loss across all tasks and also outperforms model-merging methods.
Fine-tuning large language models (LLMs) faces significant memory challenges due to the high cost of back-propagation. MeZO addresses this using zeroth-order (ZO) optimization, matching memory usage to inference but suffering from slow convergence due to varying curvatures across model parameters. To overcome this limitation, We propose HELENE, a scalable and memory-efficient optimizer that integrates annealed A-GNB gradients with diagonal Hessian estimation and layer-wise clipping as a second-order pre-conditioner. HELENE provably accelerates and stabilizes convergence by reducing dependence on total parameter space and scaling with the largest layer dimension. Experiments on RoBERTa-large and OPT-1.3B show up to a 20× speedup over MeZO with an average accuracy improvement of 1.5%. HELENE supports full and parameter-efficient fine-tuning, outperforming several state-of-the-art optimizers.
Partially Relevant Video Retrieval (PRVR) is a practical yet challenging task that involves retrieving videos based on queries relevant to only specific segments. While existing works follow the paradigm of developing models to process unimodal features, powerful pretrained vision-language models like CLIP remain underexplored in this field. To bridge this gap, we propose ProPy, a model with systematic architectural adaption of CLIP specifically designed for PRVR. Drawing insights from the semantic relevance of multi-granularity events, ProPy introduces two key innovations: (1) A Prompt Pyramid, a hierarchical structure that organizes event prompts to capture semantics at multiple granularity levels, and (2) An Ancestor-Descendant Interaction Mechanism built on the pyramid that enables dynamic semantic interaction among events. With these designs, ProPy achieves SOTA performance on three public datasets, outperforming previous models by significant margins. We will release all code and checkpoints to facilitate further research.
Traditional goal-oriented dialogue systems rely on various components such as natural language understanding, dialogue state tracking, policy learning and response generation. Training each component requires annotations which are hard to obtain for every new domain, limiting scalability of such systems. Similarly, rule-based dialogue systems require extensive writing and maintenance of rules and do not scale either. End-to-End dialogue systems, on the other hand, do not require module-specific annotations but need a large amount of data for training. To overcome these problems, in this demo, we present Alexa Conversations, a new approach for building goal-oriented dialogue systems that is scalable, extensible as well as data efficient. The components of this system are trained in a data-driven manner, but instead of collecting annotated conversations for training, we generate them using a novel dialogue simulator based on a few seed dialogues and specifications of APIs and entities provided by the developer. Our approach provides out-of-the-box support for natural conversational phenomenon like entity sharing across turns or users changing their mind during conversation without requiring developers to provide any such dialogue flows. We exemplify our approach using a simple pizza ordering task and showcase its value in reducing the developer burden for creating a robust experience. Finally, we evaluate our system using a typical movie ticket booking task integrated with live APIs and show that the dialogue simulator is an essential component of the system that leads to over 50% improvement in turn-level action signature prediction accuracy.