Yi-Li Kuo


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Personalized Cloze Test Generation with Large Language Models: Streamlining MCQ Development and Enhancing Adaptive Learning
Chih-Hsuan Shen | Yi-Li Kuo | Yao-Chung Fan
Proceedings of the 17th International Natural Language Generation Conference

Cloze multiple-choice questions (MCQs) are essential for assessing comprehension in educational settings, but manually designing effective distractors is time-consuming. Addressing this, recent research has automated distractor generation, yet such methods often neglect to adjust the difficulty level to the learner’s abilities, resulting in non-personalized assessments. This study introduces the Personalized Cloze Test Generation (PCGL) Framework, utilizing Large Language Models (LLMs) to generate cloze tests tailored to individual proficiency levels. Our PCGL Framework simplifies test creation by generating both question stems and distractors from a single input word and adjusts the difficulty to match the learner’s proficiency. The framework significantly reduces the effort in creating tests and enhances personalized learning by dynamically adjusting to the needs of each learner.