Yen-Hsuan Lee


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2018

pdf bib
繁體中文依存句法剖析器 (Traditional Chinese Dependency Parser) [In Chinese]
Yen-Hsuan Lee | Yih-Ru Wang
Proceedings of the 30th Conference on Computational Linguistics and Speech Processing (ROCLING 2018)

2017

pdf bib
NCTU-NTUT at IJCNLP-2017 Task 2: Deep Phrase Embedding using bi-LSTMs for Valence-Arousal Ratings Prediction of Chinese Phrases
Yen-Hsuan Lee | Han-Yun Yeh | Yih-Ru Wang | Yuan-Fu Liao
Proceedings of the IJCNLP 2017, Shared Tasks

In this paper, a deep phrase embedding approach using bi-directional long short-term memory (Bi-LSTM) is proposed to predict the valence-arousal ratings of Chinese words and phrases. It adopts a Chinese word segmentation frontend, a local order-aware word, a global phrase embedding representations and a deep regression neural network (DRNN) model. The performance of the proposed method was benchmarked by the IJCNLP 2017 shared task 2. According the official evaluation results, our best system achieved mean rank 6.5 among all 24 submissions.