Yehor Tereshchenko


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
A Comparative Analysis of Ethical and Safety Gaps in LLMs using Relative Danger Coefficient
Yehor Tereshchenko | Mika Hämäläinen
Proceedings of the 5th International Conference on Natural Language Processing for Digital Humanities

Artificial Intelligence (AI) and Large Language Models (LLMs) have rapidly evolved in recent years, showcasing remarkable capabilities in natural language understanding and generation. However, these advancements also raise critical ethical questions regarding safety, potential misuse, discrimination and overall societal impact. This article provides a comparative analysis of the ethical performance of various AI models, including the brand new DeepSeek-V3(R1 with reasoning and without), various GPT variants (4o, 3.5 Turbo, 4 Turbo, o1/o3 mini) and Gemini (1.5 flash, 2.0 flash and 2.0 flash exp) and highlights the need for robust human oversight, especially in situations with high stakes. Furthermore, we present a new metric for calculating harm in LLMs called Relative Danger Coefficient (RDC).