This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
YeYuan
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Chain-of-Thought (CoT) prompting has become the de facto method to elicit reasoning capabilities from large language models (LLMs). However, to mitigate hallucinations in CoT that are notoriously difficult to detect, current methods such as process reward models (PRMs) or self-consistency operate as opaque boxes and do not provide checkable evidence for their judgments, possibly limiting their effectiveness. To address this issue, we draw inspiration from the idea that “the gold standard for supporting a mathematical claim is to provide a proof”. We propose a retrospective, step-aware formal verification framework Safe. Rather than assigning arbitrary scores, we strive to articulate mathematical claims in formal mathematical language Lean 4 at each reasoning step and provide formal proofs to identify hallucinations. We evaluate our framework Safe across multiple language models and various mathematical datasets, demonstrating a significant performance improvement while offering interpretable and verifiable evidence. We also propose FormalStep as a benchmark for step correctness theorem proving with 30,809 formal statements. To the best of our knowledge, our work represents the first endeavor to utilize formal mathematical language Lean 4 for verifying content generated by LLMs, aligning with the reason why formal mathematical languages were created in the first place: to provide a robust foundation for hallucination-prone human-written proofs.
Large Multimodal Models (LMMs) exhibit impressive cross-modal understanding and reasoning abilities, often assessed through multiple-choice questions (MCQs) that include an image, a question, and several options. However, many benchmarks used for such evaluations suffer from systematic biases. Remarkably, Large Language Models (LLMs) without any visual perception capabilities achieve non-trivial performance, undermining the credibility of these evaluations. To address this issue while maintaining the efficiency of MCQ evaluations, we propose MMEVALPRO, a benchmark designed to avoid Type-I errors through a trilogy evaluation pipeline and more rigorous metrics. For each original question from existing benchmarks, human annotators augment it by creating one perception question and one knowledge anchor question through a meticulous annotation process. MMEVALPRO comprises 2,138 question triplets, totaling 6,414 distinct questions. Two-thirds of these questions are manually labeled by human experts, while the rest are sourced from existing benchmarks (MMMU, ScienceQA, and MathVista). Compared with the existing benchmarks, our experiments with the latest LLMs and LMMs demonstrate that MMEVALPRO is **more challenging** (the best LMM lags behind human performance by 31.73%, compared to an average gap of 8.03% in previous benchmarks) and **more trustworthy** (the best LLM trails the best LMM by 23.09%, whereas the gap for previous benchmarks is just 14.64%). Our in-depth analysis explains the reason for the large performance gap and justifies the trustworthiness of evaluation, underscoring its significant potential for advancing future research.
Recent advances in machine learning have significantly impacted the field of information extraction, with Language Models (LMs) playing a pivotal role in extracting structured information from unstructured text. Prior works typically represent information extraction as triplet-centric and use classical metrics such as precision and recall for evaluation. We reformulate the task to be entity-centric, enabling the use of diverse metrics that can provide more insights from various perspectives. We contribute to the field by introducing Structured Entity Extraction and proposing the Approximate Entity Set OverlaP (AESOP) metric, designed to appropriately assess model performance. Later, we introduce a new Multistage Structured Entity Extraction (MuSEE) model that harnesses the power of LMs for enhanced effectiveness and efficiency by decomposing the extraction task into multiple stages. Quantitative and human side-by-side evaluations confirm that our model outperforms baselines, offering promising directions for future advancements in structured entity extraction. Our source code is available at https://github.com/microsoft/Structured-Entity-Extraction.
We present a new challenge to examine whether large language models understand social norms. In contrast to existing datasets, our dataset requires a fundamental understanding of social norms to solve. Our dataset features the largest set of social norm skills, consisting of 402 skills and 12,383 questions covering a wide set of social norms ranging from opinions and arguments to culture and laws. We design our dataset according to the K-12 curriculum. This enables the direct comparison of the social understanding of large language models to humans, more specifically, elementary students. While prior work generates nearly random accuracy on our benchmark, recent large language models such as GPT3.5-Turbo and LLaMA2-Chat are able to improve the performance significantly, only slightly below human performance. We then propose a multi-agent framework based on large language models to improve the models’ ability to understand social norms. This method further improves large language models to be on par with humans. Given the increasing adoption of large language models in real-world applications, our finding is particularly important and presents a unique direction for future improvements.
Conversational recommender systems (CRS) aim to timely trace the dynamic interests of users through dialogues and generate relevant responses for item recommendations. Recently, various external knowledge bases (especially knowledge graphs) are incorporated into CRS to enhance the understanding of conversation contexts. However, recent reasoning-based models heavily rely on simplified structures such as linear structures or fixed-hierarchical structures for causality reasoning, hence they cannot fully figure out sophisticated relationships among utterances with external knowledge. To address this, we propose a novel Tree structure Reasoning schEmA named TREA. TREA constructs a multi-hierarchical scalable tree as the reasoning structure to clarify the causal relationships between mentioned entities, and fully utilizes historical conversations to generate more reasonable and suitable responses for recommended results. Extensive experiments on two public CRS datasets have demonstrated the effectiveness of our approach.
Recent advances in neural theorem-proving resort to large language models and tree searches. When proving a theorem, a language model advises single-step actions based on the current proving state and the tree search finds a sequence of correct steps using actions given by the language model. However, prior works often conduct constant computation efforts for each proving state while ignoring that the hard states often need more exploration than easy states. Moreover, they evaluate and guide the proof search solely depending on the current proof state instead of considering the whole proof trajectory as human reasoning does. Here, to accommodate general theorems, we propose a novel Dynamic-Tree Driven Theorem Solver (DT-Solver) by guiding the search procedure with state confidence and proof-level values. Specifically, DT-Solver introduces a dynamic-tree Monte-Carlo search algorithm, which dynamically allocates computing budgets for different state confidences, guided by a new proof-level value function to discover proof states that require substantial exploration. Experiments on two popular theorem-proving datasets, PISA and Mathlib, show significant performance gains by our DT-Solver over the state-of-the-art approaches, with a 6.65% improvement on average in terms of success rate. And especially under low computing resource settings (11.03% improvement on average).
Automated theorem proving (ATP) has become an appealing domain for exploring the reasoning ability of the recent successful generative language models. However, current ATP benchmarks are mainly focus on symbolic inference, but rarely involve the understanding of complex number combination reasoning. In this work, we propose TRIGO, an ATP benchmark that not only requires a model to reduce a trigonometric expression with step-by-step proof but also evaluates a generative LM’s reasoning ability on formulas and capability to manipulate, group, and factor number terms. We gather trigonometric expressions and their reduced forms from web, annotate the simplification process manually, and translate it into the “Lean” formal language system. We then automatically generate additional examples from the annotated samples to expand the dataset. Furthermore, we also create three automatically generated training and testing datasets of varying difficulty and distributions. Our extensive experiments show our proposed TRIGO poses a new challenge for advanced generative LM’s including GPT-4 which is pre-trained on a considerable amount of open-source formal theorem-proving language data, and provide a new tool to study the generative LM’s ability on both formal and mathematical reasoning.
This paper presents a parameter-lite transfer learning approach of pretrained language models (LM) for knowledge graph (KG) completion. Instead of finetuning, which modifies all LM parameters, we only tune a few new parameters while keeping the original LM parameters fixed. We establish this via reformulating KG completion as a “fill-in-the-blank” task, and introducing a parameter-lite encoder on top of the original LMs. We show that, by tuning far fewer parameters than finetuning, LMs transfer non-trivially to most tasks and reach competitiveness with prior state-of-the-art approaches. For instance, we outperform the fully finetuning approaches on a KG completion benchmark by tuning only 1% of the parameters.