Yazhe Niu


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
AMEX: Android Multi-annotation Expo Dataset for Mobile GUI Agents
Yuxiang Chai | Siyuan Huang | Yazhe Niu | Han Xiao | Liang Liu | Guozhi Wang | Dingyu Zhang | Shuai Ren | Hongsheng Li
Findings of the Association for Computational Linguistics: ACL 2025

AI agents have drawn increasing attention mostly on their ability to perceive environments, understand tasks, and autonomously achieve goals. To advance research on AI agents in mobile scenarios, we introduce the Android Multi-annotation EXpo (AMEX), a comprehensive, large-scale dataset designed for generalist mobile GUI-control agents which are capable of completing tasks by directly interacting with the graphical user interface (GUI) on mobile devices. AMEX comprises over 104K high-resolution screenshots from popular mobile applications, which are annotated at multiple levels. Unlike existing GUI-related datasets, e.g., Rico, AitW, etc., AMEX includes three levels of annotations: GUI interactive element grounding, GUI screen and element functionality descriptions, and complex natural language instructions with stepwise GUI-action chains. We develop this dataset from a more instructive and detailed perspective, complementing the general settings of existing datasets. Additionally, we finetune a baseline model SPHINX Agent and illustrate the effectiveness of AMEX.