This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
YassineEl Kheir
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
We present the findings of the first shared task on Qur’anic pronunciation assessment, which focuses on addressing the unique challenges of evaluating the precise pronunciation of Qur’anic recitation. To fill an existing research gap, the Iqra’Eval 2025 shared task introduces the first open benchmark for Mispronunciation Detection and Diagnosis (MDD) in Qur’anic recitation, using Modern Standard Arabic (MSA) reading of Qur’anic texts as its case study. The task provides a comprehensive evaluation framework with increasingly complex subtasks: error localization and detailed error diagnosis. Leveraging the recently developed QuranMB benchmark dataset along with auxiliary training resources, this shared task aims to stimulate research in an area of both linguistic and cultural significance while addressing computational challenges in pronunciation assessment.
This paper conducts a comprehensive layer-wise analysis of self-supervised learning (SSL) models for audio deepfake detection across diverse contexts, including multilingual datasets (English, Chinese, Spanish), partial, song, and scene-based deepfake scenarios. By systematically evaluating the contributions of different transformer layers, we uncover critical insights into model behavior and performance. Our findings reveal that lower layers consistently provide the most discriminative features, while higher layers capture less relevant information. Notably, all models achieve competitive equal error rate (EER) scores even when employing a reduced number of layers. This indicates that we can reduce computational costs and increase the inference speed of detecting deepfakes by utilizing only a few lower layers. This work enhances our understanding of SSL models in deepfake detection, offering valuable insights applicable across varied linguistic and contextual settings. Our models and code are publicly available at https://github.com/Yaselley/SSL_Layerwise_Deepfake.
This paper presents a novel Dialectal Sound and Vowelization Recovery framework, designed to recognize borrowed and dialectal sounds within phonologically diverse and dialect-rich languages, that extends beyond its standard orthographic sound sets. The proposed framework utilized quantized sequence of input with(out) continuous pretrained self-supervised representation. We show the efficacy of the pipeline using limited data for Arabic, a dialect-rich language containing more than 22 major dialects. Phonetically correct transcribed speech resources for dialectal Arabic is scare. Therefore, we introduce ArabVoice15, a first of its kind, curated test set featuring 5 hours of dialectal speech across 15 Arab countries, with phonetically accurate transcriptions, including borrowed and dialect-specific sounds. We described in detail the annotation guideline along with the analysis of the dialectal confusion pairs. Our extensive evaluation includes both subjective – human perception tests and objective measures. Our empirical results, reported with three test sets, show that with only one and half hours of training data, our model improve character error rate by ≈7% in ArabVoice15 compared to the baseline.
Recent advancements in Large Language Models (LLMs) have significantly influenced the landscape of language and speech research. Despite this progress, these models lack specific benchmarking against state-of-the-art (SOTA) models tailored to particular languages and tasks. LAraBench addresses this gap for Arabic Natural Language Processing (NLP) and Speech Processing tasks, including sequence tagging and content classification across different domains. We utilized models such as GPT-3.5-turbo, GPT-4, BLOOMZ, Jais-13b-chat, Whisper, and USM, employing zero and few-shot learning techniques to tackle 33 distinct tasks across 61 publicly available datasets. This involved 98 experimental setups, encompassing ~296K data points, ~46 hours of speech, and 30 sentences for Text-to-Speech (TTS). This effort resulted in 330+ sets of experiments. Our analysis focused on measuring the performance gap between SOTA models and LLMs. The overarching trend observed was that SOTA models generally outperformed LLMs in zero-shot learning, with a few exceptions. Notably, larger computational models with few-shot learning techniques managed to reduce these performance gaps. Our findings provide valuable insights into the applicability of LLMs for Arabic NLP and speech processing tasks.
Pronunciation assessment and its application in computer-aided pronunciation training (CAPT) have seen impressive progress in recent years. With the rapid growth in language processing and deep learning over the past few years, there is a need for an updated review. In this paper, we review methods employed in pronunciation assessment for both phonemic and prosodic. We categorize the main challenges observed in prominent research trends, and highlight existing limitations, and available resources. This is followed by a discussion of the remaining challenges and possible directions for future work.