This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
YasserHamidullah
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Sign language segmentation focuses on identifying temporal boundaries within sign language videos. As compared to previous segmentation techniques that have depended on frame-level and phrase-level segmentation, our study emphasizes on subtitle-level segmentation, using synchronized subtitle data to facilitate temporal boundary recognition. Based on Beginning-Inside-Outside (BIO) tagging for subtitle unit delineation, we train a sequence-to-sequence (Seq2Seq) model with and without attention for subtitle boundary identification. Training on optical flow data and aligned subtitles from BOBSL and YouTube-ASL, we show that the Seq2Seq model with attention outperforms baseline models, achieving improved percentage of segments, F1 and IoU score. An additional contribution is the development of an method for subtitle temporal resolution, aiming to facilitate manual annotation.
Sign language translation (SLT) is typically trained with text in a single spoken language, which limits scalability and cross-language generalization. Earlier approaches have replaced gloss supervision with text-based sentence embeddings, but up to now, these remain tied to a specific language and modality. In contrast, here we employ language-agnostic, multimodal embeddings trained on text and speech from multiple languages to supervise SLT, enabling direct multilingual translation. To address data scarcity, we propose a coupled augmentation method that combines multilingual target augmentations (i.e. translations into many languages) with video-level perturbations, improving model robustness. Experiments show consistent BLEURT gains over text-only sentence embedding supervision, with larger improvements in low-resource settings. Our results demonstrate that language-agnostic embedding supervision, combined with coupled augmentation, provides a scalable and semantically robust alternative to traditional SLT training.
State-of-the-art sign language translation (SLT) systems facilitate the learning process through gloss annotations, either in an end2end manner or by involving an intermediate step. Unfortunately, gloss labelled sign language data is usually not available at scale and, when available, gloss annotations widely differ from dataset to dataset. We present a novel approach using sentence embeddings of the target sentences at training time that take the role of glosses. The new kind of supervision does not need any manual annotation but it is learned on raw textual data. As our approach easily facilitates multilinguality, we evaluate it on datasets covering German (PHOENIX-2014T) and American (How2Sign) sign languages and experiment with mono- and multilingual sentence embeddings and translation systems. Our approach significantly outperforms other gloss-free approaches, setting the new state-of-the-art for data sets where glosses are not available and when no additional SLT datasets are used for pretraining, diminishing the gap between gloss-free and gloss-dependent systems.
This paper describes the DFKI-MLT submission to the WMT-SLT 2022 sign language translation (SLT) task from Swiss German Sign Language (video) into German (text). State-of-the-art techniques for SLT use a generic seq2seq architecture with customized input embeddings. Instead of word embeddings as used in textual machine translation, SLT systems use features extracted from video frames. Standard approaches often do not benefit from temporal features. In our participation, we present a system that learns spatio-temporal feature representations and translation in a single model, resulting in a real end-to-end architecture expected to better generalize to new data sets. Our best system achieved 5 ± 1 BLEU points on the development set, but the performance on the test dropped to 0.11 ± 0.06 BLEU points.
This paper presents an overview of AVASAG; an ongoing applied-research project developing a text-to-sign-language translation system for public services. We describe the scientific innovation points (geometry-based SL-description, 3D animation and video corpus, simplified annotation scheme, motion capture strategy) and the overall translation pipeline.