Yasamin Aali


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
YSP at SemEval-2024 Task 1: Enhancing Sentence Relatedness Assessment using Siamese Networks
Yasamin Aali | Sardar Hamidian | Parsa Farinneya
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

In this paper we present the system for Track A in the SemEval-2024 Task 1: Semantic Textual Relatedness for African and Asian Languages (STR). The proposed system integrates a Siamese Network architecture with pre-trained language models, including BERT, RoBERTa, and the Universal Sentence Encoder (USE). Through rigorous experimentation and analysis, we evaluate the performance of these models across multiple languages. Our findings reveal that the Universal Sentence Encoder excels in capturing semantic similarities, outperforming BERT and RoBERTa in most scenarios. Particularly notable is the USE’s exceptional performance in English and Marathi. These results emphasize the importance of selecting appropriate pre-trained models based on linguistic considerations and task requirements.