Yaoyu Zhang


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Understanding the Language Model to Solve the Symbolic Multi-Step Reasoning Problem from the Perspective of Buffer Mechanism
Zhiwei Wang | Yunji Wang | Zhongwang Zhang | Zhangchen Zhou | Hui Jin | Tianyang Hu | Jiacheng Sun | Zhenguo Li | Yaoyu Zhang | Zhi-Qin John Xu
Findings of the Association for Computational Linguistics: EMNLP 2025

Large language models have consistently struggled with complex reasoning tasks, such as mathematical problem-solving. Investigating the internal reasoning mechanisms of these models can help us design better model architectures and training strategies, ultimately enhancing their reasoning capability. In this study, we constructed a symbolic multi-step reasoning task to investigate the information propagation mechanisms in Transformer models when solving the task through direct answering and Chain-of-Thought (CoT) reasoning. We introduced the concept of buffer mechanism: the model stores various information in distinct buffers and selectively extracts it through the query-key matrix. We proposed a random matrix-based algorithm to enhance the model’s reasoning ability. This algorithm introduces only 132 trainable parameters, yet leads to significant performance improvements on 7 multi-step reasoning datasets, including PrOntoQA, LogicAsker, and LogicInference. These findings provide new insights into understanding the large language models.