This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
This paper investigates the faithfulness of multimodal large language model (MLLM) agents in a graphical user interface (GUI) environment, aiming to address the research question of whether multimodal GUI agents can be distracted by environmental context. A general scenario is proposed where both the user and the agent are benign, and the environment, while not malicious, contains unrelated content. A wide range of MLLMs are evaluated as GUI agents using a simulated dataset, following three working patterns with different levels of perception. Experimental results reveal that even the most powerful models, whether generalist agents or specialist GUI agents, are susceptible to distractions. While recent studies predominantly focus on the helpfulness of agents, our findings first indicate that these agents are prone to environmental distractions. Furthermore, we implement an adversarial environment injection and analyze the approach to improve faithfulness, calling for a collective focus on this important topic.
Training Large Language Models (LLMs) from scratch requires immense computational resources, making it prohibitively expensive. Model scaling-up offers a promising solution by leveraging the parameters of smaller models to create larger ones. However, existing depth scaling-up methods rely on empirical heuristic rules for layer duplication, which result in poorer initialization and slower convergence during continual pre-training. We propose LESA, a novel learnable method for depth scaling-up. By concatenating parameters from each layer and applying Singular Value Decomposition, we uncover latent patterns between layers, suggesting that inter-layer parameters can be learned. LESA uses a neural network to predict the parameters inserted between adjacent layers, enabling better initialization and faster training. Experiments show that LESA outperforms existing baselines, achieving superior performance with less than half the computational cost during continual pre-training. Extensive analyses demonstrate its effectiveness across different model sizes and tasks.
Large Language Models (LLMs) have demonstrated remarkable capabilities across diverse natural language processing tasks. However, their extensive memory requirements, particularly due to KV cache growth during long-text understanding and generation, present significant challenges for deployment in resource-constrained environments. Quantization has emerged as a promising solution to reduce memory consumption while preserving historical information. We propose XQuant, a training-free and plug-and-play framework that achieves ultra-low equivalent bit-width KV cache quantization. XQuant introduces two key innovations: a computationally negligible data-free calibration method and cross-layer KV cache compression, enabling quantization to sub-1.4 bits. Extensive experiments on TruthfulQA and LongBench demonstrate that XQuant outperforms state-of-the-art methods (e.g., KIVI-2bit and AsymKV-1.5bit) by achieving lower bit-width while maintaining superior performance, establishing a better trade-off between memory efficiency and model accuracy. The source code is available at https://github.com/brinenick511/XQuant.
As Large Language Models (LLMs) become increasingly prevalent in various domains, their ability to process inputs of any length and maintain a degree of memory becomes essential. However, the one-off input of overly long texts is limited, as studies have shown that when input lengths exceed the LLMs’ pre-trained text length, there is a dramatic decline in text generation capabilities. Moreover, simply extending the length of pre-training texts is impractical due to the difficulty in obtaining long text data and the substantial memory consumption costs this would entail for LLMs. Recent efforts have employed streaming inputs to alleviate the pressure of excessively long text inputs, but this approach can significantly impair the model’s long-term memory capabilities.Motivated by this challenge, we introduce Streaming Infinite Retentive LLM (SirLLM), which allows LLMs to maintain longer memory during infinite-length dialogues without the need for fine-tuning. SirLLM utilizes the Token Entropy metric and a memory decay mechanism to filter key phrases, endowing LLMs with both long-lasting and flexible memory. We designed three distinct tasks and constructed three datasets to measure the effectiveness of SirLLM from various angles: (1) DailyDialog; (2) Grocery Shopping; (3) Rock-Paper-Scissors. Our experimental results robustly demonstrate that SirLLM can achieve stable and significant improvements across different LLMs and tasks, compellingly proving its effectiveness. When having a coversation, “A sir could forget himself,” but SirLLM never does! Our code is publicly available at https://github.com/Zoeyyao27/SirLLMhttps://github.com/Zoeyyao27/SirLLM
With the widespread use of language models (LMs) in NLP tasks, researchers have discovered the potential of Chain-of-thought (CoT) to assist LMs in accomplishing complex reasoning tasks by generating intermediate steps. However, human thought processes are often non-linear, rather than simply sequential chains of thoughts. Therefore, we propose Graph-of-Thought (GoT) reasoning, which models human thought processes not only as a chain but also as a graph. By representing thought units as nodes and connections between them as edges, our approach captures the non-sequential nature of human thinking and allows for a more realistic modeling of thought processes. GoT adopts a two-stage framework with an additional GoT encoder for thought graph representation and fuses the graph representation with the original input representation through a gated fusion mechanism. We evaluate GoT’s performance on a text-only reasoning task (AQUA-RAT) and a multimodal reasoning task (ScienceQA). Our model achieves significant improvement over the strong CoT baseline on the AQUA-RAT test set and boosts accuracy from 85.19% to 87.59% using the T5-base model over the state-of-the-art Multimodal-CoT on the ScienceQA test set. Our code is publicly available at https://github.com/Zoeyyao27/Graph-of-Thought
The burgeoning size of Large Language Models (LLMs) has led to enhanced capabilities in generating responses, albeit at the expense of increased inference times and elevated resource demands. Existing methods of acceleration, predominantly hinged on knowledge distillation, generally necessitate fine-tuning of considerably large models, such as Llama-7B, posing a challenge for average users. Furthermore, present techniques for expediting inference and reducing costs operate independently. To address these issues, we introduce a novel and intuitive Guidance-based Knowledge Transfer (GKT) framework. This approach leverages a larger LLM as a ”teacher” to create guidance prompts, paired with a smaller ”student” model to finalize responses. Remarkably, GKT requires no fine-tuning and doesn’t necessitate the teacher and student models to have the same vocabulary, allowing for extensive batch generation to accelerate the process while ensuring user customization. GKT can be seamlessly integrated into cloud-edge collaboration architectures, and is versatile enough for plug-and-play application across various models. It excels in both efficiency and affordability, epitomizing a ”cheap and cheerful” solution. GKT achieves a maximum accuracy improvement of 14.18%, along with a 10.72 times speed-up on GSM8K and an accuracy improvement of 14.00 % along with a 7.73 times speed-up in CSQA. When utilizing ChatGPT as teacher model and Llama2-70B as the student model, we can achieve 95.00% of ChatGPT’s performance at 52% of the cost. The results highlight substantial enhancements in accuracy and processing speed on the GSM8K and CSQA datasets, surpassing the performance of using either the student or teacher models in isolation.
Researchers are witnessing knowledge-inspired natural language processing shifts the focus from entity-level to event-level, whereas event coreference resolution is one of the core challenges. This paper proposes a novel model for within-document event coreference resolution. On the basis of event but not entity as before, our model learns and integrates multiple representations from both event alone and event pair. For the former, we introduce multiple linguistics-motivated event alone features for more discriminative event representations. For the latter, we consider multiple similarity measures to capture the distinction of event pair. Our proposed model achieves new state-of-the-art on the ACE 2005 benchmark, demonstrating the effectiveness of our proposed framework.