This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
YaoFu
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Despite their success, large language models (LLMs) suffer from notorious hallucination issue. By introducing external knowledge stored in knowledge graphs (KGs), existing methods use paths as the medium to represent the graph information that send into LLMs. However, paths only contain limited graph structure information and are unorganized with redundant sequentially appeared keywords, which are difficult for LLMs to digest. We aim to find a suitable medium that captures the essence of structure knowledge in KGs. Inspired by the Neural Message Passing in Graph Neural Networks, we propose Language Message Passing (LMP) that first learns a concise facts graph by iteratively aggregates neighbor entities and transforms them into semantic facts, and then we performs Topological Readout that encodes the graph structure information into multi-level lists of texts to augment LLMs. Our method serves as a brand-new innovative framework that brings a new perspective into KG-enhanced LLMs, and also offers human-level semantic explainability with significant performance improvements over existing methods on all 5 knowledge graph question answering datasets. Code is available at https://github.com/wanjunhong0/LMP.
Large Language Models (LLMs) demonstrate strong abilities in common-sense reasoning and interactive decision-making, but often struggle with complex, long-horizon planning tasks. Recent techniques have sought to structure LLM outputs using control flow and code to improve planning performance. However, code-based approaches can be error-prone and insufficient for handling ambiguous or unstructured data. To address these challenges, we propose REPL-Plan, an LLM planning approach that is fully code-expressive (it can utilize all the benefits of code) while also being dynamic (it can flexibly adapt from errors and use the LLM for soft reasoning). In REPL-Plan, an LLM solves tasks by interacting with a Read-Eval-Print Loop (REPL), which iteratively executes and evaluates code, similar to language shells or interactive code notebooks, allowing the model to flexibly correct errors and handle tasks dynamically. We demonstrate that REPL-Plan achieves strong results across various planning domains compared to previous methods.
Large language models (LLMs) tend to follow maliciously crafted instructions to generate deceptive responses, posing safety challenges. How deceptive instructions alter the internal representations of LLM compared to truthful ones remains poorly understood beyond output analysis. To bridge this gap, we investigate when and how these representations “flip”, such as from truthful to deceptive, under deceptive versus truthful/neutral instructions. Analyzing the internal representations of Llama-3.1-8B-Instruct and Gemma-2-9B-Instruct on a factual verification task, we find the model’s instructed True/False output is predictable via linear probes across all conditions based on the internal representation. Further, we use Sparse Autoencoders (SAEs) to show that the Deceptive instructions induce significant representational shifts compared to Truthful/Neutral representations (which are similar), concentrated in early-to-mid layers and detectable even on complex datasets. We also identify specific SAE features highly sensitive to deceptive instruction and use targeted visualizations to confirm distinct truthful/deceptive representational subspaces.
Quantization enables efficient deployment of large language models (LLMs) in resource-constrained environments by significantly reducing memory and computation costs. While quantized LLMs often maintain performance on perplexity and zero-shot tasks, their impact on truthfulness—whether generating truthful or deceptive responses—remains largely unexplored. In this work, we introduce TruthfulnessEval, a comprehensive evaluation framework for assessing the truthfulness of quantized LLMs across three dimensions: (1) Truthfulness on Logical Reasoning; (2) Truthfulness on Common Sense; and (3) Truthfulness on Imitative Falsehoods. Using this framework, we examine mainstream quantization techniques (ranging from 4-bit to extreme 2-bit) across several open-source LLMs. Surprisingly, we find that while quantized models retain internally truthful representations, they are more susceptible to producing false outputs under misleading prompts. To probe this vulnerability, we test 15 rephrased variants of “honest”, “neutral” and “deceptive” prompts and observe that “deceptive” prompts can override truth-consistent behavior, whereas “honest” and “neutral” prompts maintain stable outputs. Further, we reveal that quantized models “know” the truth internally yet still produce false outputs when guided by “deceptive” prompts via layer-wise probing and PCA visualizations. Our findings provide insights into future designs of quantization-aware alignment and truthfulness interventions.
The efficacy of Large Language Models (LLMs) in long-context tasks is often hampered by the substantial memory footprint and computational demands of the Key-Value (KV) cache. Current compression strategies, including token eviction and learned projections, frequently lead to biased representations—either by overemphasizing recent/high-attention tokens or by repeatedly degrading information from earlier context—and may require costly model retraining. We present FAEDKV (Frequency-Adaptive Infinite-Window for KV cache), a novel, training-free KV cache compression framework that ensures unbiased information retention. FAEDKV operates by transforming the KV cache into the frequency domain using a proposed Infinite-Window Fourier Transform (IWDFT). This approach allows for the equalized contribution of all tokens to the compressed representation, effectively preserving both early and recent contextual information. A preliminary frequency ablation study identifies critical spectral components for layer-wise, targeted compression. Experiments on LongBench benchmark demonstrate FAEDKV’s superiority over existing methods by up to 22%. In addition, our method shows superior, position-agnostic retrieval accuracy on the Needle-In-A-Haystack task compared to compression based approaches.
Neural network pruning has emerged as a promising approach for deploying LLMs in low-resource scenarios while preserving downstream task performance. However, for the first time, we reveal that such pruning disrupts LLMs’ internal activation features crucial for lie detection, where probing classifiers (typically small logistic regression models) trained on these features assess the truthfulness of LLM-generated statements. This discovery raises a crucial open question: how can we prune LLMs without sacrificing these critical lie detection capabilities? Our investigation further reveals that naively adjusting layer-wise pruning sparsity based on importance inadvertently removes crucial weights, failing to improve lie detection performance despite its reliance on the most crucial LLM layer. To address this issue, we propose Truthful Pruning aligned by Layer-wise Outliers (TPLO), which places greater emphasis on layers with more activation outliers and stronger discriminative features simultaneously. This preserves LLMs’ original performance while retaining critical features of inner states needed for robust lie detection. Moreover, we introduce a prompting rule to enrich the TruthfulQA benchmark for better calibrating LLM pruning. Empirical results show that our approach improves the hallucination detection for pruned LLMs (achieving 88% accuracy at 50% sparsity) and enhances their performance on TruthfulQA.
Figurative language (e.g., “he flew like the wind”) is challenging to understand, as it is hard to tell what implicit information is being conveyed from the surface form alone. We hypothesize that to perform this task well, the reader needs to mentally elaborate the scene being described to identify a sensible meaning of the language. We present DREAM-FLUTE, a figurative language understanding system that does this, first forming a “mental model” of situations described in a premise and hypothesis before making an entailment/contradiction decision and generating an explanation. DREAM-FLUTE uses an existing scene elaboration model, DREAM, for constructing its “mental model.” In the FigLang2022 Shared Task evaluation, DREAM-FLUTE achieved (joint) first place (Acc@60=63.3%), and can perform even better with ensemble techniques, demonstrating the effectiveness of this approach. More generally, this work suggests that adding a reflective component to pretrained language models can improve their performance beyond standard fine-tuning (3.3% improvement in Acc@60).
Pre-trained language models have shown successful progress in many text understanding benchmarks. This work explores the capability of these models to predict actionable plans in real-world environments. Given a text instruction, we show that language priors encoded in pre-trained models allow us to infer fine-grained subgoal sequences. In contrast to recent methods which make strong assumptions about subgoal supervision, our experiments show that language models can infer detailed subgoal sequences from few training sequences without any fine-tuning. We further propose a simple strategy to re-rank language model predictions based on interaction and feedback from the environment. Combined with pre-trained navigation and visual reasoning components, our approach demonstrates competitive performance on subgoal prediction and task completion in the ALFRED benchmark compared to prior methods that assume more subgoal supervision.
We consider the task of data-to-text generation, which aims to create textual output from non-linguistic input. We focus on generating long-form text, that is, documents with multiple paragraphs, and propose a neural model enhanced with a planning component responsible for organizing high-level information in a coherent and meaningful way. We infer latent plans sequentially with a structured variational model, while interleaving the steps of planning and generation. Text is generated by conditioning on previous variational decisions and previously generated text. Experiments on two data-to-text benchmarks (RotoWire and MLB) show that our model outperforms strong baselines and is sample-efficient in the face of limited training data (e.g., a few hundred instances).
Recent studies in deep learning have shown significant progress in named entity recognition (NER). However, most existing works assume clean data annotation, while real-world scenarios typically involve a large amount of noises from a variety of sources (e.g., pseudo, weak, or distant annotations). This work studies NER under a noisy labeled setting with calibrated confidence estimation. Based on empirical observations of different training dynamics of noisy and clean labels, we propose strategies for estimating confidence scores based on local and global independence assumptions. We partially marginalize out labels of low confidence with a CRF model. We further propose a calibration method for confidence scores based on the structure of entity labels. We integrate our approach into a self-training framework for boosting performance. Experiments in general noisy settings with four languages and distantly labeled settings demonstrate the effectiveness of our method.
Text attribute transfer is modifying certain linguistic attributes (e.g. sentiment, style, author-ship, etc.) of a sentence and transforming them from one type to another. In this paper, we aim to analyze and interpret what is changed during the transfer process. We start from the observation that in many existing models and datasets, certain words within a sentence play important roles in determining the sentence attribute class. These words are referred as the Pivot Words. Based on these pivot words, we propose a lexical analysis framework, the Pivot Analysis, to quantitatively analyze the effects of these words in text attribute classification and transfer. We apply this framework to existing datasets and models and show that: (1) the pivot words are strong features for the classification of sentence attributes; (2) to change the attribute of a sentence, many datasets only requires to change certain pivot words; (3) consequently, many transfer models only perform the lexical-level modification,while leaving higher-level sentence structures unchanged. Our work provides an in-depth understanding of linguistic attribute transfer and further identifies the future requirements and challenges of this task
Memory augmented encoder-decoder framework has achieved promising progress for natural language generation tasks. Such frameworks enable a decoder to retrieve from a memory during generation. However, less research has been done to take care of the memory contents from different sources, which are often of heterogeneous formats. In this work, we propose a novel attention mechanism to encourage the decoder to actively interact with the memory by taking its heterogeneity into account. Our solution attends across the generated history and memory to explicitly avoid repetition, and introduce related knowledge to enrich our generated sentences. Experiments on the answer sentence generation task show that our method can effectively explore heterogeneous memory to produce readable and meaningful answer sentences while maintaining high coverage for given answer information.