Yansha Zhu


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
RRNorm: A Novel Framework for Chinese Disease Diagnoses Normalization via LLM-Driven Terminology Component Recognition and Reconstruction
Yongqi Fan | Yansha Zhu | Kui Xue | Jingping Liu | Tong Ruan
Findings of the Association for Computational Linguistics: ACL 2024

The Clinical Terminology Normalization aims at finding standard terms from a given termbase for mentions extracted from clinical texts. However, we found that extracted mentions suffer from the multi-implication problem, especially disease diagnoses. The reason for this is that physicians often use abbreviations, conjunctions, and juxtapositions when writing diagnoses, and it is difficult to manually decompose. To address this problem, we propose a Terminology Component Recognition and Reconstruction strategy that leverages the reasoning capability of large language models (LLMs) to recognize the components of terms, enabling automated decomposition and transforming original mentions into multiple atomic mentions. Furthermore, we adopt the mainstream “Recall and Rank” framework to apply the benefits of the above strategy to the task flow. By leveraging the LLM incorporating the advanced sampling strategies, we design a sampling algorithm for atomic mentions and train the recall model using contrastive learning. Besides the information about the components is also used as knowledge to guide the final term ranking and selection. The experimental results show that our proposed strategy effectively improves the performance of the terminology normalization task and our proposed approach achieves state-of-the-art on the experimental dataset. We release our code and data on the repository https://github.com/yuugaochyan/RRNorm.