Yang Meng


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
CRF-based recognition of invasive fungal infection concepts in CHIFIR clinical reports
Yang Meng | Vlada Rozova | Karin Verspoor
Proceedings of the 21st Annual Workshop of the Australasian Language Technology Association

Named entity recognition (NER) in clinical documentation is often hindered by the use of highly specialised terminology, variation in language used to express medical findings and general scarcity of high-quality data available for training. This short paper compares a Conditional Random Fields model to the previously established dictionary-based approach and evaluates its ability to extract information from a small corpus of annotated pathology reports. The results suggest that including token descriptors as well as contextual features significantly improves precision on several concept categories while maintaining the same level of recall.