Yang Kai


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
Task-oriented Domain-specific Meta-Embedding for Text Classification
Xin Wu | Yi Cai | Yang Kai | Tao Wang | Qing Li
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Meta-embedding learning, which combines complementary information in different word embeddings, have shown superior performances across different Natural Language Processing tasks. However, domain-specific knowledge is still ignored by existing meta-embedding methods, which results in unstable performances across specific domains. Moreover, the importance of general and domain word embeddings is related to downstream tasks, how to regularize meta-embedding to adapt downstream tasks is an unsolved problem. In this paper, we propose a method to incorporate both domain-specific and task-oriented information into meta-embeddings. We conducted extensive experiments on four text classification datasets and the results show the effectiveness of our proposed method.