This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
YanboWang
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Large Language Models (LLMs) have achieved remarkable success in Natural Language Processing (NLP), yet their cross-lingual consistency remains a significant challenge. This paper introduces a novel methodology for efficiently identifying inherent cross-lingual weaknesses in LLMs. Our approach leverages beam search and LLM-based simulation to generate bilingual question pairs that expose performance discrepancies between English and target languages. We construct a new dataset of over 6,000 bilingual pairs across 16 languages using this methodology, demonstrating its effectiveness in revealing weaknesses even in state-of-the-art models. The extensive experiments demonstrate that our method precisely and cost-effectively pinpoints cross-lingual weaknesses, consistently revealing over 50% accuracy drops in target languages across a wide range of models. Moreover, further experiments investigate the relationship between linguistic similarity and cross-lingual weaknesses, revealing that linguistically related languages share similar performance patterns and benefit from targeted post-training. Code is available at https://github.com/xzx34/Cross-Lingual-Pitfalls.
Language is not only a tool for communication but also a medium for human cognition and reasoning. If, as linguistic relativity suggests, the structure of language shapes cognitive patterns, then large language models (LLMs) trained on human language may also internalize the habitual logical structures embedded in different languages. To examine this hypothesis, we introduce BICAUSE, a structured bilingual dataset for causal reasoning, which includes semantically aligned Chinese and English samples in both forward and reversed causal forms. Our study reveals three key findings: (1) LLMs exhibit typologically aligned attention patterns, focusing more on causes and sentence-initial connectives in Chinese, while showing a more balanced distribution in English. (2) Models internalize language-specific preferences for causal components order and often rigidly apply them to atypical inputs, leading to degraded performance, especially in Chinese. (3) When causal reasoning succeeds, model representations converge toward semantically aligned abstractions across languages, indicating a shared understanding beyond surface form. Overall, these results suggest that LLMs not only mimic surface linguistic forms but also internalize the reasoning biases shaped by language. Rooted in cognitive linguistic theory, this phenomenon is for the first time empirically verified through structural analysis of model internals.
Ensuring the trustworthiness of Generative Foundation Models (GenFMs) is a pressing challenge as they gain widespread use. Existing evaluation toolkits are often limited in scope, dynamism, and flexibility. This paper introduces TRUSTEVAL, a dynamic and comprehensive toolkit designed for evaluating GenFMs across various dimensions. TRUSTEVAL supports both dynamic dataset generation and evaluation, offering advanced features including comprehensiveness, usability, and flexibility. TRUSTEVAL integrates diverse generative models, datasets, evaluation methods, metrics, inference efficiency enhancement, and evaluation report generation. Through case studies, we demonstrate TRUSTEVAL’s potential to advance the trustworthiness evaluation of GenFMs.