This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
YahuiFu
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
This paper introduces the human-like embodied AI interviewer which integrates android robots equipped with advanced conversational capabilities, including attentive listening, conversational repairs, and user fluency adaptation. Moreover, it can analyze and present results post-interview. We conducted a real-world case study at SIGDIAL 2024 with 42 participants, of whom 69% reported positive experiences. This study demonstrated the system’s effectiveness in conducting interviews just like a human and marked the first employment of such a system at an international conference. The demonstration video is available at https://youtu.be/jCuw9g99KuE.
Turn-taking prediction models are essential components in spoken dialogue systems and conversational robots. Recent approaches leverage transformer-based architectures to predict speech activity continuously and in real-time. In this study, we propose a novel model that enables turn-taking prediction to be dynamically controlled via textual prompts. This approach allows intuitive and explicit control through instructions such as “faster” or “calmer,” adapting dynamically to conversational partners and contexts. The proposed model builds upon a transformer-based voice activity projection (VAP) model, incorporating textual prompt embeddings into both channel-wise transformers and a cross-channel transformer. We evaluated the feasibility of our approach using over 950 hours of human-human spoken dialogue data. Since textual prompt data for the proposed approach was not available in existing datasets, we utilized a large language model (LLM) to generate synthetic prompt sentences. Experimental results demonstrated that the proposed model improved prediction accuracy and effectively varied turn-taking timing behaviors according to the textual prompts.
Recent approaches for empathetic response generation mainly focus on emotional resonance and user understanding, without considering the system’s personality. Consistent personality is evident in real human expression and is important for creating trustworthy systems. To address this problem, we propose StyEmp, which aims to stylize the empathetic response generation with a consistent personality. Specifically, it incorporates a multi-grained prefix mechanism designed to capture the intricate relationship between a system’s personality and its empathetic expressions. Furthermore, we introduce a personality reinforcement module that leverages contrastive learning to calibrate the generation model, ensuring that responses are both empathetic and reflective of a distinct personality. Automatic and human evaluations on the EMPATHETICDIALOGUES benchmark show that StyEmp outperforms competitive baselines in terms of both empathy and personality expressions. Our code is available at https://github.com/fuyahuii/StyEmp.
Recent approaches to empathetic response generation try to incorporate commonsense knowledge or reasoning about the causes of emotions to better understand the user’s experiences and feelings. However, these approaches mainly focus on understanding the causalities of context from the user’s perspective, ignoring the system’s perspective. In this paper, we propose a commonsense-based causality explanation approach for diverse empathetic response generation that considers both the user’s perspective (user’s desires and reactions) and the system’s perspective (system’s intentions and reactions). We enhance ChatGPT’s ability to reason for the system’s perspective by integrating in-context learning with commonsense knowledge. Then, we integrate the commonsense-based causality explanation with both ChatGPT and a T5-based model. Experimental evaluations demonstrate that our method outperforms other comparable methods on both automatic and human evaluations.
The author’s objective centers around developing a spoken dialogue system (SDS) that can emulate the cognitive and conversational qualities of a human friend. Key attributes such as empathy, knowledge/causality reasoning, and personality are integral components of human interaction. The proposed approach involves the creation of an Empathy-enriched SDS, capable of comprehending human emotions and circumstances, thus providing companionship and assistance akin to a trusted friend. Additionally, the Causality-reasoning for SDS aims to ground the system in commonsense knowledge and equip it with the ability to reason about causalities, such as predicting user desires/reactions and system intentions/reactions, thereby enhancing the system’s intelligence and human-like behavior. Finally, the concept of a Personality-conditioned SDS involves enabling systems to exhibit distinct personalities, further enhancing the naturalness of human-robot interaction.