Yahe Yang


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
GRoWE: A GujiRoBERTa-Enhanced Approach to Ancient Chinese NER via Word-Word Relation Classification and Model Ensembling
Tian Xia | Yilin Wang | Xinkai Wang | Yahe Yang | Qun Zhao | Menghui Yang
Proceedings of the Second Workshop on Ancient Language Processing

Named entity recognition is a fundamental task in ancient Chinese text analysis.Based on the pre-trained language model of ancient Chinese texts, this paper proposes a new named entity recognition method GRoWE. It uses the ancient Chinese texts pre-trained language model GujiRoBERTa as the base model, and the wordword relation prediction model is superposed upon the base model to construct a superposition model. Then ensemble strategies are used to multiple superposition models. On the EvaHan 2025 public test set, the F1 value of the proposed method reaches 86.79%, which is 6.18% higher than that of the mainstream BERT_LSTM_CRF baseline model, indicating that the model architecture and ensemble strategy play an important role in improving the recognition effect of naming entities in ancient Chinese texts.