This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
XuanshengWu
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Sparse Autoencoders (SAEs) have recently emerged as powerful tools for interpreting and steering the internal representations of large language models (LLMs). However, conventional approaches to analyzing SAEs typically rely solely on input-side activations, without considering the influence between each latent feature and the model’s output. This work is built on two key hypotheses: (1) activated latents do not contribute equally to the construction of the model’s output, and (2) only latents with high influence are effective for model steering. To validate these hypotheses, we propose Gradient Sparse Autoencoder (GradSAE), a simple yet effective method that identifies the most influential latents by incorporating output-side gradient information.
The prevalence of vision-threatening eye diseases is a significant global burden, with many cases remaining undiagnosed or diagnosed too late for effective treatment. Large vision-language models (LVLMs) have the potential to assist in understanding anatomical information, diagnosing eye diseases, and drafting interpretations and follow-up plans, thereby reducing the burden on clinicians and improving access to eye care. However, limited benchmarks are available to assess LVLMs’ performance in ophthalmology-specific applications. In this study, we introduce LMOD, a large-scale multimodal ophthalmology benchmark consisting of 21,993 instances across (1) five ophthalmic imaging modalities: optical coherence tomography, color fundus photographs, scanning laser ophthalmoscopy, lens photographs, and surgical scenes; (2) free-text, demographic, and disease biomarker information; and (3) primary ophthalmology-specific applications such as anatomical information understanding, disease diagnosis, and subgroup analysis. In addition, we benchmarked 13 state-of-the-art LVLM representatives from closed-source, open-source, and medical domains. The results demonstrate a significant performance drop for LVLMs in ophthalmology compared to other domains. Systematic error analysis further identified six major failure modes: misclassification, failure to abstain, inconsistent reasoning, hallucination, assertions without justification, and lack of domain-specific knowledge. In contrast, supervised neural networks specifically trained on these tasks as baselines demonstrated high accuracy. These findings underscore the pressing need for benchmarks in the development and validation of ophthalmology-specific LVLMs.
Large Language Models (LLMs) have transformed natural language processing, yet their internal mechanisms remain largely opaque. Recently, mechanistic interpretability has attracted significant attention from the research community as a means to understand the inner workings of LLMs. Among various mechanistic interpretability approaches, Sparse Autoencoders (SAEs) have emerged as a promising method due to their ability to disentangle the complex, superimposed features within LLMs into more interpretable components. This paper presents a comprehensive survey of SAEs for interpreting and understanding the internal workings of LLMs. Our major contributions include: (1) exploring the technical framework of SAEs, covering basic architecture, design improvements, and effective training strategies; (2) examining different approaches to explaining SAE features, categorized into input-based and output-based explanation methods; (3) discussing evaluation methods for assessing SAE performance, covering both structural and functional metrics; and (4) investigating real-world applications of SAEs in understanding and manipulating LLM behaviors.
This paper introduces the Decomposed Requirements Following Ratio (DRFR), a new metric for evaluating Large Language Models’ (LLMs) ability to follow instructions. Addressing a gap in current methodologies, DRFR breaks down complex instructions into simpler criteria, facilitating a detailed analysis of LLMs’ compliance with various aspects of tasks. Alongside this metric, we present InFoBench, a benchmark comprising 500 diverse instructions and 2,250 decomposed questions across multiple constraint categories. Our experiments compare DRFR with traditional scoring methods and explore annotation sources, including human experts, crowd-sourced workers, and GPT-4. The findings demonstrate DRFR’s higher reliability and the effectiveness of using GPT-4 as a cost-efficient annotator. The evaluation of several advanced LLMs using this framework reveals their strengths and areas needing improvement, particularly in complex instruction-following. This study contributes a novel metric and benchmark, offering insights for future LLM development and evaluation.
Large Language Models (LLMs) have achieved remarkable success, where instruction tuning is the critical step in aligning LLMs with user intentions. In this work, we investigate how the instruction tuning adjusts pre-trained models with a focus on intrinsic changes. Specifically, we first develop several local and global explanation methods, including a gradient-based method for input-output attribution, and techniques for interpreting patterns and concepts in self-attention and feed-forward layers. The impact of instruction tuning is then studied by comparing the explanations derived from the pre-trained and instruction-tuned models. This approach provides an internal perspective of the model shifts on a human-comprehensible level. Our findings reveal three significant impacts of instruction tuning: 1) It empowers LLMs to recognize the instruction parts of user prompts, and promotes the response generation constantly conditioned on the instructions. 2) It encourages the self-attention heads to capture more word-word relationships about instruction verbs. 3) It encourages the feed-forward networks to rotate their pre-trained knowledge toward user-oriented tasks. These insights contribute to a more comprehensive understanding of instruction tuning and lay the groundwork for future work that aims at explaining and optimizing LLMs for various applications. Our code and data are publicly available at https://github.com/JacksonWuxs/Interpret_Instruction_Tuning_LLMs.